连续函数的图像是什么样子的呢?
1个回答
展开全部
如果函数 f(x) 在 x=0 处连续,那么表示函数在 x=0 的左右两侧的极限存在且相等,并且函数在 x=0 处的函数值也存在,并且等于这个极限值。
更具体地说,如果 f(x) 在 x=0 处连续,需要满足以下三个条件:
1. 左极限和右极限存在且相等:lim┬(x0⁻) f(x) = lim┬(x0⁺) f(x)。
这表示靠近 x=0 的左边和右边的极限值存在,并且相等。也就是说,无论从左侧或右侧接近 x=0,函数都趋向于相同的极限值。
2. 函数值存在:f(0)存在。
这表示函数在 x=0 处有定义,它的函数值存在。
3. 极限值和函数值相等:lim┬(x0) f(x) = f(0)。
这表示当 x 趋近于 0 时,函数 f(x) 的极限值等于它在 x=0 处的函数值。换句话说,函数在 x=0 处没有跳跃或间断。
因此,如果 f(x) 在 x=0 处连续,那么函数在该点周围的图像是连续、无间断的,没有突变或断裂。
更具体地说,如果 f(x) 在 x=0 处连续,需要满足以下三个条件:
1. 左极限和右极限存在且相等:lim┬(x0⁻) f(x) = lim┬(x0⁺) f(x)。
这表示靠近 x=0 的左边和右边的极限值存在,并且相等。也就是说,无论从左侧或右侧接近 x=0,函数都趋向于相同的极限值。
2. 函数值存在:f(0)存在。
这表示函数在 x=0 处有定义,它的函数值存在。
3. 极限值和函数值相等:lim┬(x0) f(x) = f(0)。
这表示当 x 趋近于 0 时,函数 f(x) 的极限值等于它在 x=0 处的函数值。换句话说,函数在 x=0 处没有跳跃或间断。
因此,如果 f(x) 在 x=0 处连续,那么函数在该点周围的图像是连续、无间断的,没有突变或断裂。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询