如何matlab编程仿真LMS算法的自适应陷波器,并画出幅频曲线陷波的频率值
2个回答
展开全部
N=400; %总采样长度
t=0:N-1; %时间的变化范围
s=sin(2*pi*t/20); %输入信号
A=0.5; %干扰信号的幅值
fai=pi/3;%干扰信号的相移
n=A*cos(2*pi*t/10+fai);%干扰信号
x=s+n;%信号混合
subplot(2,2,1);%作第一子图
plot(t,s);
subplot(2,2,2); %作第二子图
plot(t,x);
x1=cos(2*pi*t/10);
x2=sin(2*pi*t/10);
%初始化
w1=0.1;
w2=0.1;
e=zeros(1,N);
y=0;
u=0.05;%迭代步长
for i=1:N
y=w1*x1(i)+w2*x2(i);
e(i)=x(i)-y;%误差信号
w1=w1+u*e(i)*x1(i);%迭代方程
w2=w2+u*e(i)*x2(i);%迭代方程
end
subplot(2,2,3); %作第三子图
plot(t,e);
subplot(2,2,4); %作第四子图
plot(t,s-e);
t=0:N-1; %时间的变化范围
s=sin(2*pi*t/20); %输入信号
A=0.5; %干扰信号的幅值
fai=pi/3;%干扰信号的相移
n=A*cos(2*pi*t/10+fai);%干扰信号
x=s+n;%信号混合
subplot(2,2,1);%作第一子图
plot(t,s);
subplot(2,2,2); %作第二子图
plot(t,x);
x1=cos(2*pi*t/10);
x2=sin(2*pi*t/10);
%初始化
w1=0.1;
w2=0.1;
e=zeros(1,N);
y=0;
u=0.05;%迭代步长
for i=1:N
y=w1*x1(i)+w2*x2(i);
e(i)=x(i)-y;%误差信号
w1=w1+u*e(i)*x1(i);%迭代方程
w2=w2+u*e(i)*x2(i);%迭代方程
end
subplot(2,2,3); %作第三子图
plot(t,e);
subplot(2,2,4); %作第四子图
plot(t,s-e);
追问
请问滤波器结构和上面的是一样的,用粒子群算法怎么编程啊?谢谢高手指点
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-08-07 广告
2024-08-07 广告
在东莞市大凡光学科技有限公司,我们利用Halcon软件处理机器视觉项目时,会用到自定义标定板以满足特定需求。Halcon支持用户根据实际应用场景自定义标定板形状与标记点。这不仅可以灵活应对不同工作环境,还能提高标定精度。通过调整圆点数量、间...
点击进入详情页
本回答由东莞大凡提供
展开全部
%LMS算法演示(matlab)
%设置参数,N为采样个数,u为步长
clear,clc;
N=16;u=0.1;
%设置迭代次数k
k=250;
%pha为随机噪声的平均功率
rk=randn(1,k)/2;%%正态分布的随机矩阵
pha=mean(rk);%%求元素平均值
%设置起始权值
wk(1,:)=[0 0];
%用LMS算法迭代求最佳权值
for i=1:k
xk(i,:)=[sin(2*pi*i/N) sin(2*pi*(i-1)/N)]+rk(i);%输入信号
yk(i)=xk(i,:)*wk(i,:)';%输出信号
dk(i)=2*cos(2*pi*i/N);%期望信号
err(i)=dk(i)-yk(i);%误差
wk(i+1,:)=wk(i,:)+2*u*err(i)*xk(i,:);%权值迭代
end
[x,y]=meshgrid([-2:0.1:8],[-10:0.1:0]);
%求性能表面
z=(0.5+pha)*(x.^2+y.^2)+x.*y*cos(2*pi/N)+2*y*sin(2*pi/N)+2;
%求理论最佳权值x1,y1
x1=2*cos(2*pi/N)*sin(2*pi/N)/((1+pha)^2-(cos(2*pi/N))^2);
y1=-2*(1+2*pha)*sin(2*pi/N)/((1+pha)^2-(cos(2*pi/N))^2);
%画性能表面的等高线
figure,contour(x,y,z,[0.78 1.9 6.3 13.6 23.8 37]);%%等值线图
%画迭代时权值的变化
hold on;plot(wk(:,1),wk(:,2),'r');
%标注最佳权值的位置
hold on;plot(x1,y1,'*');
%绘制误差与迭代次数的图
figure,plot(err);
%设置参数,N为采样个数,u为步长
clear,clc;
N=16;u=0.1;
%设置迭代次数k
k=250;
%pha为随机噪声的平均功率
rk=randn(1,k)/2;%%正态分布的随机矩阵
pha=mean(rk);%%求元素平均值
%设置起始权值
wk(1,:)=[0 0];
%用LMS算法迭代求最佳权值
for i=1:k
xk(i,:)=[sin(2*pi*i/N) sin(2*pi*(i-1)/N)]+rk(i);%输入信号
yk(i)=xk(i,:)*wk(i,:)';%输出信号
dk(i)=2*cos(2*pi*i/N);%期望信号
err(i)=dk(i)-yk(i);%误差
wk(i+1,:)=wk(i,:)+2*u*err(i)*xk(i,:);%权值迭代
end
[x,y]=meshgrid([-2:0.1:8],[-10:0.1:0]);
%求性能表面
z=(0.5+pha)*(x.^2+y.^2)+x.*y*cos(2*pi/N)+2*y*sin(2*pi/N)+2;
%求理论最佳权值x1,y1
x1=2*cos(2*pi/N)*sin(2*pi/N)/((1+pha)^2-(cos(2*pi/N))^2);
y1=-2*(1+2*pha)*sin(2*pi/N)/((1+pha)^2-(cos(2*pi/N))^2);
%画性能表面的等高线
figure,contour(x,y,z,[0.78 1.9 6.3 13.6 23.8 37]);%%等值线图
%画迭代时权值的变化
hold on;plot(wk(:,1),wk(:,2),'r');
%标注最佳权值的位置
hold on;plot(x1,y1,'*');
%绘制误差与迭代次数的图
figure,plot(err);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询