已知函数f(x)=cos(2π-x) cos(π/2-x)-sin^2x (1)求函数f(x)的最小正周期
2011-04-14
展开全部
解:1、f(x)=cos(2π-x) cos(π/2-x)-sin^2x
=-cosxsinx-sin^2x
=-½sin2x-(1-cos2x)/2
=-1/2sin2x+1/2cos2x-1/2
= - √2/2sin(2x-π/4)-1/2
所以函数f(x)的最小正周期为π
2、当x∈[-π/8,3π/8]时,-π/2≤2x-π/4≤π/2 ,f(x)最小值为x=3π/8时,f(x)=-1/2-√2/2
x=π/8时f(x)最大值为√2/2-1/2
所以当x∈[-π/8,3/8π]时,函数f(x)的值域为[-1/2-√2/2,√2/2-1/2]
=-cosxsinx-sin^2x
=-½sin2x-(1-cos2x)/2
=-1/2sin2x+1/2cos2x-1/2
= - √2/2sin(2x-π/4)-1/2
所以函数f(x)的最小正周期为π
2、当x∈[-π/8,3π/8]时,-π/2≤2x-π/4≤π/2 ,f(x)最小值为x=3π/8时,f(x)=-1/2-√2/2
x=π/8时f(x)最大值为√2/2-1/2
所以当x∈[-π/8,3/8π]时,函数f(x)的值域为[-1/2-√2/2,√2/2-1/2]
展开全部
1、f(x)=cos(2π-x) cos(π/2-x)-sin^2x
=cosx*sinx+1/2(1-2sin^2x )-1/2
=1/2sin2x+1/2cos2x-1/2
=√2/2(sin2xcosπ/4+cos2xsinπ/4)-1/2
=√2/2sin(2x+π/4)-1/2
所以函数f(x)的最小正周期为π
2、当x∈[-π/8,3/8π]时,f(x)最小值为x=-π/8或3/8π时,f(x)=-1/2
x=π/8时f(x)最大值为√2/2-1/2
所以当x∈[-π/8,3/8π]时,函数f(x)的值域为[-1/2,√2/2-1/2]
=cosx*sinx+1/2(1-2sin^2x )-1/2
=1/2sin2x+1/2cos2x-1/2
=√2/2(sin2xcosπ/4+cos2xsinπ/4)-1/2
=√2/2sin(2x+π/4)-1/2
所以函数f(x)的最小正周期为π
2、当x∈[-π/8,3/8π]时,f(x)最小值为x=-π/8或3/8π时,f(x)=-1/2
x=π/8时f(x)最大值为√2/2-1/2
所以当x∈[-π/8,3/8π]时,函数f(x)的值域为[-1/2,√2/2-1/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询