7个回答
展开全部
法一、
(1)公式2sinAcosB=cos(A-B)-cos(A+B),
证:∵ cos(A-B)=cosAcosB+sinAainB, cos(A+B)=cosAcosB-sinAsinB,作差即得;
(2)sinA+sin(A+B)+sin(A+2B)+……+sin(A+nB)=[ cos(A-B/2)-cos(A+(n+1/2)B) ] /2cosB/2,
证:由(1),2cosB/2 *[ sinA+sin(A+B)+sin(A+2B)+……+sin(A+nB) ]
=cos(A-B/2) -cos(A+B/2)+cos(A+B/2)-cos(A+3/2*B)+cos(A+3/2*B)-cos(A+5/2*B)+……+cos(A+(n-1/2)B)-cos(A+(n+1/2)B)=cos(A-B/2)-cos(A+(n+1/2)B),两边同除2cosB/2即得;
(3)由(2)sin6°+sin78°+sin150°+sin222°+sin294°=[ cos(6°-36°)-cos(294°+36°) ]/2cos36°=(cos-30°-cos330°)/2cos36°=0,∴sin6°+sin78°+sin222°+sin294° = -sin150°=-1/2。
法二
记A(cos6°,sin6°),B(cos78°,sin78°),C(cos150°,sin150°),D(cos222°,sin222°),E(cos294°,sin294°),易知五边形ABCDE是正五边形,且重心为原点,故由重心坐标公式有[ sin6°+sin78°+sin150°+sin222°+sin294°]/5=0,∴sin6°+sin78°+sin222°+sin294° = -sin150°=-1/2。
(1)公式2sinAcosB=cos(A-B)-cos(A+B),
证:∵ cos(A-B)=cosAcosB+sinAainB, cos(A+B)=cosAcosB-sinAsinB,作差即得;
(2)sinA+sin(A+B)+sin(A+2B)+……+sin(A+nB)=[ cos(A-B/2)-cos(A+(n+1/2)B) ] /2cosB/2,
证:由(1),2cosB/2 *[ sinA+sin(A+B)+sin(A+2B)+……+sin(A+nB) ]
=cos(A-B/2) -cos(A+B/2)+cos(A+B/2)-cos(A+3/2*B)+cos(A+3/2*B)-cos(A+5/2*B)+……+cos(A+(n-1/2)B)-cos(A+(n+1/2)B)=cos(A-B/2)-cos(A+(n+1/2)B),两边同除2cosB/2即得;
(3)由(2)sin6°+sin78°+sin150°+sin222°+sin294°=[ cos(6°-36°)-cos(294°+36°) ]/2cos36°=(cos-30°-cos330°)/2cos36°=0,∴sin6°+sin78°+sin222°+sin294° = -sin150°=-1/2。
法二
记A(cos6°,sin6°),B(cos78°,sin78°),C(cos150°,sin150°),D(cos222°,sin222°),E(cos294°,sin294°),易知五边形ABCDE是正五边形,且重心为原点,故由重心坐标公式有[ sin6°+sin78°+sin150°+sin222°+sin294°]/5=0,∴sin6°+sin78°+sin222°+sin294° = -sin150°=-1/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin6°+sin78°+sin222°+sin294°
=(sin6°+sin294°)+(sin78°+sin222°) 和差化积
=2sin[300°/2]·cos[(294°-6°)/2]+2sin[300°/2]·cos[(222°-78°)/2]
=cos144°+cos72°
=-cos36°+cos72°
=-(sin36°cos36°-sin36°cos72°)/sin36°
=(sin108°-sin36°-sin72°)/2sin36°
=(sin72°-sin36°-sin72°)/2sin36°
=-sin36°/2sin36°
=-1/2
=(sin6°+sin294°)+(sin78°+sin222°) 和差化积
=2sin[300°/2]·cos[(294°-6°)/2]+2sin[300°/2]·cos[(222°-78°)/2]
=cos144°+cos72°
=-cos36°+cos72°
=-(sin36°cos36°-sin36°cos72°)/sin36°
=(sin108°-sin36°-sin72°)/2sin36°
=(sin72°-sin36°-sin72°)/2sin36°
=-sin36°/2sin36°
=-1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为:sin222=sin(180+42)=-sin42,sin294=sin(360-66)=-sin66。
所以:sin6°+sin78°+sin222°+sin294° =sin6+sin78-(sin42+sin66)
根据和差化积得:原式=2sin42cos36- 2sin54cos12=2sin54sin42- 2sin54sin78
=2sin54(sin42- sin78)= - 2sin54( sin78+ sin(-42))
再和差化积得:= - 4sin54sin18cos60=- 2sin54sin18=- 2cos36sin18
=- 2cos36sin18cos18/cos18 = - cos36sin36/cos18 = - sin72/(2cos18) = - sin72/(2sin72)= - 1/2
所以:sin6°+sin78°+sin222°+sin294° =sin6+sin78-(sin42+sin66)
根据和差化积得:原式=2sin42cos36- 2sin54cos12=2sin54sin42- 2sin54sin78
=2sin54(sin42- sin78)= - 2sin54( sin78+ sin(-42))
再和差化积得:= - 4sin54sin18cos60=- 2sin54sin18=- 2cos36sin18
=- 2cos36sin18cos18/cos18 = - cos36sin36/cos18 = - sin72/(2cos18) = - sin72/(2sin72)= - 1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin6°+sin78°+sin222°+sin294°
=(sin6°+sin294°)+(sin78°+sin222°) 和差化积
=2sin[300°/2]*cos[(294°-6°)/2]+2sin[300°/2]*cos[(222°-78°)/2]
=cos144°+cos72°
=-cos36°+cos72°
= sin18°-sin54°
=2cos[(18°+54°)/2]*sin[(18°-54°)/2]
=-2cos36*sin18
=-cos36*sin36/cos18
=-sin72/(2cos18)
=-1/2
=(sin6°+sin294°)+(sin78°+sin222°) 和差化积
=2sin[300°/2]*cos[(294°-6°)/2]+2sin[300°/2]*cos[(222°-78°)/2]
=cos144°+cos72°
=-cos36°+cos72°
= sin18°-sin54°
=2cos[(18°+54°)/2]*sin[(18°-54°)/2]
=-2cos36*sin18
=-cos36*sin36/cos18
=-sin72/(2cos18)
=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询