设抛物线y^2=2px焦点为F,直线l过点F交抛物线于A,B两点,A,B纵坐标分别为y1,y2,证y1y2=-p^2

百老统
2011-04-15 · TA获得超过1651个赞
知道小有建树答主
回答量:211
采纳率:0%
帮助的人:214万
展开全部
解:
焦点F(p/2,0)
若l与x轴垂直,有:
A(p/2,p),B(p/2,-p),y1y2=-p^2
若l不与x轴垂直,设l:y=k(x-p/2)
x=y^2/(2p)代入直线l的方程得:
y=k(y^2/(2p)-p/2)
化简得:ky^2/(2p)-y-kp/2=0
该方程的两根即为A,B两点的纵坐标
y1y2=(-kp/2)/(k/(2p))=-p^2
asd20060324
2011-04-15 · TA获得超过5.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:62%
帮助的人:8690万
展开全部
焦点为F(p/2,0)
直线l y=k(x-p/2) x=y/k+p/2 代入 y^2=2px中
y^2-2p(y/k+p/2)=0
y^2-2py/k-p^2=0
y1y2=-p^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式