2010年义乌数学中考题选择题第10题如何做
1个回答
展开全部
考点:菱形的判定;等腰三角形的判定。
分析:根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断.
解答:解:①∵DE‖BC,
∴∠ADE=∠B,∠EDF=∠BFD,
又∵△ADE≌△FDE,
∴∠ADE=∠EDF,AD=FD,AE=CE,
∴∠B=∠BFD,
∴△BDF是等腰三角形,故①正确;
同理可证,△CEF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
∴DE=BC,故②正确;
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故④正确.
而无法证明四边形ADFE是菱形,故③错误.
所以一定正确的结论个数有3个,
故选C.
点评:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:
①定义;
②四边相等;
③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.
够详细吧!嘻嘻
分析:根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断.
解答:解:①∵DE‖BC,
∴∠ADE=∠B,∠EDF=∠BFD,
又∵△ADE≌△FDE,
∴∠ADE=∠EDF,AD=FD,AE=CE,
∴∠B=∠BFD,
∴△BDF是等腰三角形,故①正确;
同理可证,△CEF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
∴DE=BC,故②正确;
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故④正确.
而无法证明四边形ADFE是菱形,故③错误.
所以一定正确的结论个数有3个,
故选C.
点评:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:
①定义;
②四边相等;
③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.
够详细吧!嘻嘻
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询