若多项式x^2+2x+5是x^4+mx^2+n的一个因式,则m= ,n=

wjs123456784
2011-04-16 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2847
采纳率:0%
帮助的人:3501万
展开全部
解答:
因为:多项式x^2+2x+5是x^4+mx^2+n的一个因式
所以:可设x^4+mx^2+n=(x^2+2x+5)(x^2+ax+b)=x^4+(2+a)x^3+(5+2a+b)x^2+(5a+2b)x+5b
所以:2+a=0,m=5+2a+b,5a+2b=0,n=5b
解得:a=-2,b=5
所以:m=5-4+5=6,n=25
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式