已知函数fx=3ax^4-2(3a+1)x^2+4x,①当a=1/6时,求fx的极值;②若fx在(-1,1)上是增函数,求a的取值范围
a=1/6f(x)=x^4/2-3x²+4xf'(x)=2x³-6x+4=0x³-3x+2=0(x³-1)-3x+3=0(x-1)...
a=1/6
f(x)=x^4/2-3x²+4x
f'(x)=2x³-6x+4=0
x³-3x+2=0
(x³-1)-3x+3=0
(x-1)(x²+x+1)-3(x-1)=0
(x-1)(x²+x-2)=0
(x-1)²(x+2)=0
x=1,x=-2
这是网上的解题步骤,然后我想请问一下
(x-1)(x²+x+1)-3(x-1)=0
到这一步的时候
为什么不可以写成(x-1)(x²+x+1)=3(x-1)
然后两边同时消去(x-1)
得到:x²+x+1=3
x²+x+1-3=0
x²+x-2=0
(x+2)(x-1)=0
不是也可以得到x=1,x=-2么
然后如果为了后面答题着想的话
是怎么化成
(x-1)(x²+x-2)=0
(x-1)²(x+2)=0
知道的人请帮忙下,着急。 展开
f(x)=x^4/2-3x²+4x
f'(x)=2x³-6x+4=0
x³-3x+2=0
(x³-1)-3x+3=0
(x-1)(x²+x+1)-3(x-1)=0
(x-1)(x²+x-2)=0
(x-1)²(x+2)=0
x=1,x=-2
这是网上的解题步骤,然后我想请问一下
(x-1)(x²+x+1)-3(x-1)=0
到这一步的时候
为什么不可以写成(x-1)(x²+x+1)=3(x-1)
然后两边同时消去(x-1)
得到:x²+x+1=3
x²+x+1-3=0
x²+x-2=0
(x+2)(x-1)=0
不是也可以得到x=1,x=-2么
然后如果为了后面答题着想的话
是怎么化成
(x-1)(x²+x-2)=0
(x-1)²(x+2)=0
知道的人请帮忙下,着急。 展开
4个回答
展开全部
可以约去x-1,但要说明x≠1,然后再检验当x=1时也适合题意
解题步骤中是提出了公因式x-1,得到
(x-1)(x²+x+1-3)=0
(x-1)(x²+x-2)=0
解题步骤中是提出了公因式x-1,得到
(x-1)(x²+x+1-3)=0
(x-1)(x²+x-2)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询