已知a1=1,an+1=an+2^n,求an.
展开全部
已知 a_(n+1) = a_n + 2^n
得 a_(n+1) - a_n = 2^n
a_(n) - a_(n -1) = 2^(n-1)
a_(n-1) - a_(n-2) = 2^(n-2)
......
......
a_3 - a_2 = 2^2
a_2 - a_1 = 2^1
a_1 = 1
上式连加,得:
a_(n+1) = 1 + 2^1 + 2^2 +......+ 2^(n-2)+ 2^(n-1)+ 2^n
根据等比数列求和公式,得:
a_(n+1) = 2^(n+1)-1
∴ a_n = 2^n-1 (n>1)
a_1 = 1 满足公式
∴ a_n = 2^n-1
得 a_(n+1) - a_n = 2^n
a_(n) - a_(n -1) = 2^(n-1)
a_(n-1) - a_(n-2) = 2^(n-2)
......
......
a_3 - a_2 = 2^2
a_2 - a_1 = 2^1
a_1 = 1
上式连加,得:
a_(n+1) = 1 + 2^1 + 2^2 +......+ 2^(n-2)+ 2^(n-1)+ 2^n
根据等比数列求和公式,得:
a_(n+1) = 2^(n+1)-1
∴ a_n = 2^n-1 (n>1)
a_1 = 1 满足公式
∴ a_n = 2^n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询