六年级下册数学第二单元知识点总结(圆柱和圆锥) 20

MiMi琉璃小雪
2011-04-17 · TA获得超过5075个赞
知道小有建树答主
回答量:179
采纳率:0%
帮助的人:154万
展开全部
一、圆柱
圆柱的定义
1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱的表面积
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积S:
S=2*S底+S侧
=2*πr2+CH
圆柱的体积
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h
如S为底面积,高为h,体积为V:v=sh
圆柱的侧面积
圆柱的侧面积=底面周长乘高 S侧=Ch
注:c为πd
圆柱各部分的名称
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。

二、圆锥
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径。
证明:
把圆锥沿高分成k分
每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以
V锥是与它等底等高的V柱体积的1/3
圆锥的表面积
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式
圆锥的侧面积=高的平方*π*百分之扇形的度数
圆锥的侧面积=1/2*母线长*底面周长
圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线)
圆锥的体积=1/3SH 或 1/3πr的平方h
如果圆锥和他的扇形联系在一起那么n=a/r*360
圆锥的其它概念
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
不相等的圆柱圆锥不相等。
匿名用户
2011-04-28
展开全部
一、圆柱
圆柱的定义
1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱的表面积
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积S:
S=2*S底+S侧
=2*πr2+CH
圆柱的体积
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h
如S为底面积,高为h,体积为V:v=sh
圆柱的侧面积
圆柱的侧面积=底面周长乘高 S侧=Ch
注:c为πd
圆柱各部分的名称
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。

二、圆锥
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径。
证明:
把圆锥沿高分成k分
每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以
V锥是与它等底等高的V柱体积的1/3
圆锥的表面积
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式
圆锥的侧面积=高的平方*π*百分之扇形的度数
圆锥的侧面积=1/2*母线长*底面周长
圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线)
圆锥的体积=1/3SH 或 1/3πr的平方h
如果圆锥和他的扇形联系在一起那么n=a/r*360
圆锥的其它概念
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
不相等的圆柱圆锥不相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小孔STAR
2012-03-03
知道答主
回答量:8
采纳率:0%
帮助的人:3.9万
展开全部
一、圆柱
圆柱的定义
1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱的表面积
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积S:
S=2*S底+S侧
=2*πr2+CH
圆柱的体积
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h
如S为底面积,高为h,体积为V:v=sh
圆柱的侧面积
圆柱的侧面积=底面周长乘高 S侧=Ch
注:c为πd
圆柱各部分的名称
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。

二、圆锥
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径。
证明:
把圆锥沿高分成k分
每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以
V锥是与它等底等高的V柱体积的1/3
圆锥的表面积
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式
圆锥的侧面积=高的平方*π*百分之扇形的度数
圆锥的侧面积=1/2*母线长*底面周长
圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线)
圆锥的体积=1/3SH 或 1/3πr的平方h
如果圆锥和他的扇形联系在一起那么n=a/r*360
圆锥的其它概念
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
不相等的圆柱圆锥不相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
折乎折矣
2013-03-28
知道答主
回答量:25
采纳率:0%
帮助的人:4.3万
展开全部
一、圆柱
圆柱的定义
1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱的表面积
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积S:
S=2*S底+S侧
=2*πr2+CH
圆柱的体积
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h
如S为底面积,高为h,体积为V:v=sh
圆柱的侧面积
圆柱的侧面积=底面周长乘高 S侧=Ch
注:c为πd
圆柱各部分的名称
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。

二、圆锥
圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径。
证明:
把圆锥沿高分成k分
每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
因为
1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6
所以
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为V柱=pi*h*r^2
所以
V锥是与它等底等高的V柱体积的1/3
圆锥的表面积
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式
圆锥的侧面积=高的平方*π*百分之扇形的度数
圆锥的侧面积=1/2*母线长*底面周长
圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线)
圆锥的体积=1/3SH 或 1/3πr的平方h
如果圆锥和他的扇形联系在一起那么n=a/r*360
圆锥的其它概念
圆锥的高:
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
不相等的圆柱圆锥不相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
liqiu900618
2011-05-06
知道答主
回答量:9
采纳率:0%
帮助的人:2.7万
展开全部
.圆锥的特征:由2个面围成,一个是底面,一个是曲面(展开后是一个扇形)
 只有一条高。
  2.圆柱的体积:
  公式的推导:利用转化的策略。
  把圆柱的底面平均分成16、32、64……无限分割,切开后拼成的物体越来越接近长方体。根据长方体的体积公式推导出圆柱的体积公式。
  V=sh(底面积×高)
  当然在计算圆柱体积的过程中,还有一些变式。如已知半径、直径、底面周长等。
  例如:
  已知底面半径是10厘米,高是12厘米,求圆柱的体积。
  已知底面直径是4分米,高是8分米,求圆柱的体积。
  已知圆柱的底面周长是12.56分米,高5分米,求圆柱的体积。
  3.圆锥的体积:
  通过操作观察讨论获得:圆锥的体积是与它等底等高的圆柱体积的1/3()圆柱的体积是与它等底等高圆锥体积的3倍。
  V=1/3sh
  4.关于圆锥的一些拓展提高,将会在下面的学习中遇到。
  (1)等底、等高的圆柱体积与圆锥的体积比是3:1
  例如:一个圆柱的体积是24立方米,与它等底等高的圆锥的体积是()。
  (2)等体积、等高的圆柱的底面积与圆锥的底面积的比是1:3;
  一个圆柱和一个圆锥体积相等,高也相等,已知圆锥的底面积是6平方厘米,圆柱的底面积是()。
  (3)等体积、等底面积的圆柱的高与圆锥的高的比是1:3
  一个圆柱和一个圆锥底面积相等,体积也相等,已知圆柱的高是15厘米,圆锥的高是()厘米。
  5.有关圆锥体积的练习
  (1)一个圆锥,底面积是170平方厘米,高是12厘米,这个圆锥的体积是多少立方厘米?
  (2)把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥形零件的高。
  (3)把一个圆锥形铁块浸没在一个底面半径是6厘米,水深20厘米的容器中,水面上升到22厘米,这个圆锥铁块的体积是多少
  (4)一个圆锥形的沙堆,底面积是12.56平方米,高是6米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?
  (5)一个圆柱形钢块,底面半径和高都是8分米,把它熔铸成一个等高的圆锥,这个圆锥的底面积是多少平方分米?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式