证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

huangyy0322
2011-04-17 · TA获得超过2741个赞
知道小有建树答主
回答量:408
采纳率:0%
帮助的人:429万
展开全部
1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩 阵T,使T'AT成对角型,而对角线上的元素就是它的特征根。由此,开证,
(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T'AT对角线上的元素均为正数,所以T'AT为正定矩阵,又T为正交阵,所以A是正定阵
(2)必要性:由于对称矩阵A是正定矩阵,所以存在一个正交矩阵T,使T'AT成对角型的对角线上的元素均为正值,而对角线上的元素又为A的所有特征值,即A的特征值均为正数。
你好,希望能够帮到你。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式