证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

huangyy0322
2011-04-17 · TA获得超过2741个赞
知道小有建树答主
回答量:408
采纳率:0%
帮助的人:437万
展开全部
1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩 阵T,使T'AT成对角型,而对角线上的元素就是它的特征根。由此,开证,
(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T'AT对角线上的元素均为正数,所以T'AT为正定矩阵,又T为正交阵,所以A是正定阵
(2)必要性:由于对称矩阵A是正定矩阵,所以存在一个正交矩阵T,使T'AT成对角型的对角线上的元素均为正值,而对角线上的元素又为A的所有特征值,即A的特征值均为正数。
你好,希望能够帮到你。
迈杰
2024-11-30 广告
GWAS,即全基因组关联分析,是一种强大的遗传学研究方法。它通过对大规模群体的DNA变异进行系统性扫描,寻找与特定性状(如疾病易感性、药物反应等)相关联的遗传变异。在迈杰转化医学研究(苏州)有限公司,我们利用先进的GWAS技术,挖掘疾病相关... 点击进入详情页
本回答由迈杰提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式