1个回答
2011-04-17
展开全部
原式=1/(2+1)(2-1)+1/(3+1)(3-1)+1/(4+1)(4-1)+……+1/(n+1)(n-1)
=1/3*1+1/4*2+1/5*3+……+1/(n+1)(n+1)
=1/2[1-1/3+1/2-1/4+1/3-1/5+……+1/(n-1)-1/(n+1)] (裂项求和)
=1/2[1+1/2-1/n-1/(n+1)]
=3/4-(2n+1)/(2n^2+2n)
=1/3*1+1/4*2+1/5*3+……+1/(n+1)(n+1)
=1/2[1-1/3+1/2-1/4+1/3-1/5+……+1/(n-1)-1/(n+1)] (裂项求和)
=1/2[1+1/2-1/n-1/(n+1)]
=3/4-(2n+1)/(2n^2+2n)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询