如图1,已知角ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕浏览次数:507次悬赏分:20|解决时间:2010...
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕
浏览次数:507次悬赏分:20 | 解决时间:2010-11-3 20:10 | 提问者:11997012265
点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F。
当点P为射线BC上任意一点时,∠QFC的度数是多少?
图片地址:http://zhidao.baidu.com/question/194801732.html
重点:::(3)已知线段AB=2根号3,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式!!??????????? 展开
浏览次数:507次悬赏分:20 | 解决时间:2010-11-3 20:10 | 提问者:11997012265
点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F。
当点P为射线BC上任意一点时,∠QFC的度数是多少?
图片地址:http://zhidao.baidu.com/question/194801732.html
重点:::(3)已知线段AB=2根号3,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式!!??????????? 展开
6个回答
展开全部
∠QFC=60°.
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
展开全部
证明:(1)∵∠ABC=90°,∠BAC=60°,
∴∠EBF=30°;(1分)
则猜想:∠QFC=60°;(2分)
(2)∠QFC=60°. (1分)
设AP交QF于M,∠QMP为△AMQ和△FMP共同的外角,
∴∠QMP=∠Q+∠PAQ=∠APB+∠QFC,
由△ABP≌△AEQ得∠Q=∠APB,由旋转知∠PAQ=60°,
∴∠QFC=∠PAQ=60°,
(3)在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=23.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE2=3,
∴BF=BGcos30°=2.
∴EF=2. (1分)
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2. (2分)
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF=32(x+2).(x>0)
即y关于x的函数关系式是:y=32x+3.
∴∠EBF=30°;(1分)
则猜想:∠QFC=60°;(2分)
(2)∠QFC=60°. (1分)
设AP交QF于M,∠QMP为△AMQ和△FMP共同的外角,
∴∠QMP=∠Q+∠PAQ=∠APB+∠QFC,
由△ABP≌△AEQ得∠Q=∠APB,由旋转知∠PAQ=60°,
∴∠QFC=∠PAQ=60°,
(3)在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=23.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE2=3,
∴BF=BGcos30°=2.
∴EF=2. (1分)
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2. (2分)
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF=32(x+2).(x>0)
即y关于x的函数关系式是:y=32x+3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠QFC=60°.
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠QFC=60°.
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠QFC=60°.
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
不妨设BP>√3 AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS)
∴∠AEQ=∠ABP=90°.
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°.
在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2√3.
由(1)得∠EBF=30°.
在Rt△BGF中,BG=BE/2 =√3 ,
∴BF= BE/cos30=2.
∴EF=2.
∵△ABP≌△AEQ.
∴QE=BP=x,
∴QF=QE+EF=x+2.
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF= √3/2(x+2).(x>0)
即y关于x的函数关系式是:y=√3/2 x+ √3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询