O为三角形ABC一点.且满足向量OA+向量OB+向量OC=.则点O为该三角形的什么心
展开全部
O为三角形ABC所在平面内一点,OA+OB+OC=0<=>点O是三角形ABC的重心
(OA ,OB, OC, 0为向量)
取BC中点D,连结并延长OD至E,使DE=OD,则四边形BOCE是平行四边形
∴向量OB=向量CE
∴向量OB+向量OC=向量CE+向量OC=向量OE
由向量OA+向量OB+向量OC=0得:向量OB+向量OC=-向量OA=向量AO
∴向量AO和向量OE共线===>A、O、E三点共线
而D在OE上, ∴A、O、D三点共线
而点D又是BC中点, ∴AD(即AO)是三角形ABC中BC边上的中线
同理可证BO是AC边上的中线,CO是AB边上的中线
∴点O是三角形ABC的重心。
(OA ,OB, OC, 0为向量)
取BC中点D,连结并延长OD至E,使DE=OD,则四边形BOCE是平行四边形
∴向量OB=向量CE
∴向量OB+向量OC=向量CE+向量OC=向量OE
由向量OA+向量OB+向量OC=0得:向量OB+向量OC=-向量OA=向量AO
∴向量AO和向量OE共线===>A、O、E三点共线
而D在OE上, ∴A、O、D三点共线
而点D又是BC中点, ∴AD(即AO)是三角形ABC中BC边上的中线
同理可证BO是AC边上的中线,CO是AB边上的中线
∴点O是三角形ABC的重心。
展开全部
设△ABC,向量OA+向量OB+向量OC=0,
延长BO到D,使得BO=DO,
∴向量OB=-向量OD,
即向量OD=向量OA+OB。
连接AD,CD,∴向量OA=向量CD,
向量OC=向量AD。
∴四边形OADC是平行四边形,
∴AC与OD相互平分,
BO在AC中线上。
同理AO,CO分别在BC,AB的中线上,
∴O是△ABC的重心。
延长BO到D,使得BO=DO,
∴向量OB=-向量OD,
即向量OD=向量OA+OB。
连接AD,CD,∴向量OA=向量CD,
向量OC=向量AD。
∴四边形OADC是平行四边形,
∴AC与OD相互平分,
BO在AC中线上。
同理AO,CO分别在BC,AB的中线上,
∴O是△ABC的重心。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
点O是三角形ABC的重心。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询