若sin(π/6-α)=1/3,则cos(2π/3+2α)的值? 请针对每一步做说明,清楚一点。
3个回答
展开全部
解:cos(2π/3+2α)= - cos(π-(2π/3+2α))
=- cos(π/3-2α)
=- cos(2α-π/3) (公式cos2α=1-2(sinα)^2)
=- (1-2(sin(α-π/6))^2)
因为 sin(π/6-α)=1/3 所以(sin(α-π/6))^2=1/9
故cos(2π/3+2α)= -(1-2*1/9)
=-7/9
=- cos(π/3-2α)
=- cos(2α-π/3) (公式cos2α=1-2(sinα)^2)
=- (1-2(sin(α-π/6))^2)
因为 sin(π/6-α)=1/3 所以(sin(α-π/6))^2=1/9
故cos(2π/3+2α)= -(1-2*1/9)
=-7/9
追问
)= - cos(π-(2π/3+2α))
=- cos(π/3-2α) 这一步是如何变化过来的
=- cos(2α-π/3) 这一步是如何变化过来的
追答
cos(2π/3+2α)= - cos(π-(2π/3+2α)) //注:直接将括号内的展开就可以得到下面的
=- cos(π/3-2α)
//注:根据公式cos(-β)=cosβ,这里有cos(π/3-2α)=cos(-(2α-π/3))=cos(2α-π/3)
=- cos(2α-π/3) (公式cos2α=1-2(sinα)^2)
=- (1-2(sin(α-π/6))^2)
因为 sin(π/6-α)=1/3 所以(sin(α-π/6))^2=1/9
故cos(2π/3+2α)= -(1-2*1/9)
=-7/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询