如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,判断△MEF的形状.
,如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,判断△MEF的形状.并证明你的结论....
,如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,判断△MEF的形状.并证明你的结论.
展开
展开全部
成就系统就好像忽然很想热议和信任吐谷浑
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
△MEF是等腰直角三角形
证明:连结AM
∵AB=AC,∠A=90°,∠B=45°
又DF⊥AB,∴ ∠BDF=∠B=45°
∴BF=DF,∴BF=AE
∵AB=AC,∠A=90°,M为BC的中点
∴∠MAE=∠B=45°,且AM=BM
在△AEM和△BMF中
AE=BF,∠MAE=∠B,AM=BM
∴△AEM≌△BMF
∴ME=MF,∠AME=∠BMF
∴∠EMF=∠AME+∠AMF=∠BMF+∠AMF=90°
∴△MEF是等腰直角三角形
希望能对你有帮助
证明:连结AM
∵AB=AC,∠A=90°,∠B=45°
又DF⊥AB,∴ ∠BDF=∠B=45°
∴BF=DF,∴BF=AE
∵AB=AC,∠A=90°,M为BC的中点
∴∠MAE=∠B=45°,且AM=BM
在△AEM和△BMF中
AE=BF,∠MAE=∠B,AM=BM
∴△AEM≌△BMF
∴ME=MF,∠AME=∠BMF
∴∠EMF=∠AME+∠AMF=∠BMF+∠AMF=90°
∴△MEF是等腰直角三角形
希望能对你有帮助
参考资料: http://zhidao.baidu.com/question/219050052.html?an=0&si=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询