已知直线L与函数f(x)=Inx的图象相切于点(1,0),且L与函数g(x)=1\2x的平方+mx+7\2(m<0)的图象也相切,求
2个回答
展开全部
构造函数来证明。
设h(x)=lnx-x+1(x>0),
求导得:h’(x)=1/x-1=(1-x)/x,
x>1时,h’(x)<0,函数递减;
0<x<1时,h’(x)>0,函数递增。
所以x=1时函数取到极大值h(1)=ln1-1+1=0.
∴h(x)=lnx-x+1≤0,(x=1时取等号)
令x=(a+b)/(2a),
则有ln(a+b)/(2a)-(a+b)/(2a)+1<0,
ln(a+b)/(2a) <(a+b)/(2a)-1,
即ln(a+b)/(2a) <(b-a)/(2a).
设h(x)=lnx-x+1(x>0),
求导得:h’(x)=1/x-1=(1-x)/x,
x>1时,h’(x)<0,函数递减;
0<x<1时,h’(x)>0,函数递增。
所以x=1时函数取到极大值h(1)=ln1-1+1=0.
∴h(x)=lnx-x+1≤0,(x=1时取等号)
令x=(a+b)/(2a),
则有ln(a+b)/(2a)-(a+b)/(2a)+1<0,
ln(a+b)/(2a) <(a+b)/(2a)-1,
即ln(a+b)/(2a) <(b-a)/(2a).
展开全部
构造函数来证明。
设h(x)=lnx-x+1(x>0),
求导得:h’(x)=1/x-1=(1-x)/x,
x>1时,h’(x)<0,函数递减;
0<x<1时,h’(x)>0,函数递增。
所以x=1时函数取到极大值h(1)=ln1-1+1=0.
∴h(x)=lnx-x+1≤0,(x=1时取等号)
令x=(a+b)/(2a),
则有ln(a+b)/(2a)-(a+b)/(2a)+1<0,
ln(a+b)/(2a) <(a+b)/(2a)-1,
即ln(a+b)/(2a) <(b-a)/(2a).
设h(x)=lnx-x+1(x>0),
求导得:h’(x)=1/x-1=(1-x)/x,
x>1时,h’(x)<0,函数递减;
0<x<1时,h’(x)>0,函数递增。
所以x=1时函数取到极大值h(1)=ln1-1+1=0.
∴h(x)=lnx-x+1≤0,(x=1时取等号)
令x=(a+b)/(2a),
则有ln(a+b)/(2a)-(a+b)/(2a)+1<0,
ln(a+b)/(2a) <(a+b)/(2a)-1,
即ln(a+b)/(2a) <(b-a)/(2a).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询