4个回答
展开全部
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=lim{1/[(1+1/n)+x^2/(2n^2)]^n} 【n→∞】
=lim{1/[(1+1/n)^n+n*(1+1/n)^(n-1)*(x^2/2n^2)+n*(n-1)*(1+1/n)^(n-2)*(x^2/2n^2)^2/2+......]}
=lim{1/(1+1/n)^n+x^2*(1+1/n)^(n-1)/(2n)}
=1/e
=lim{1/[(1+1/n)^n+n*(1+1/n)^(n-1)*(x^2/2n^2)+n*(n-1)*(1+1/n)^(n-2)*(x^2/2n^2)^2/2+......]}
=lim{1/(1+1/n)^n+x^2*(1+1/n)^(n-1)/(2n)}
=1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x=0,原式=1
x不为0, lim(1+x/n+x^2 /2n^2)^(-n)=lim [1+(2nx+x^2) /2n^2]^(-n)
= lim [1+(2nx+x^2) /2n^2]^ [(2n^2)/(2nx+x^2)*(2nx+x^2) /2n^2 *(-n)]
=e^{lim (2nx+x^2) /2n^2 *(-n)}
=e^(-x)
综上,原式= e^(-x)
x不为0, lim(1+x/n+x^2 /2n^2)^(-n)=lim [1+(2nx+x^2) /2n^2]^(-n)
= lim [1+(2nx+x^2) /2n^2]^ [(2n^2)/(2nx+x^2)*(2nx+x^2) /2n^2 *(-n)]
=e^{lim (2nx+x^2) /2n^2 *(-n)}
=e^(-x)
综上,原式= e^(-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询