4个回答
展开全部
一元二次方程测试题
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、 方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
初三一元二次方程训练题 1 姓名
一、填空题:(3、4、5 各3分,其余每空2分,共39分)
⒈ 把方程 化成一般式是 ;
2.关于 的方程 中, 二次项是 ; 常数项是 ;
一次项是 ;
⒊ 方程 的根是 ; ⒋ 方程 的根是 ;
⒌ 方程 的根是 ;
⒍ ⒎
⒏ ⒐
二、选择题(6分×3=18分)
1.在选择方程 , 中,应选一元二次方程的个数为-------------------( )
A 3 个 B 4 个 C 5 个 D 6 个
⒉ 方程 的实数根的个数是------------------------------------------------------------------- ( )
A 1个 B 2 个 C 0 个 D 以上答案都不对
⒊ 方程 的根是 ----------------------------------------------------------------( )
A B C D
三、解下列方程 ( 8分×4=32分)
(因式分解法) (因式分解法)
(配方法) (求根公式法)
四、解关于 的方程 ( 11 分 )
(6分) (5分)
五、选作
⑴ 已知两数的和是 , 积是 , 求这两数.(10分)
⑵ 已知 、 、 为三角形的三边, 求证 ∶方程 没有实数根 (10分)
中考题型:观察下列等式: ,用含自然数 的等式表示这种规律为
1.填空题:(5分×5=25分)
(1)我国1978年末城乡居民的存款为X亿元;1988年末的存款比1978年末的存款的18倍还多4亿元,则1988年末的存款为 亿元.
(2)甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,然后甲再追乙,那么在追及问题中,甲、乙二人的路程差是 米,甲、乙的速度差是——;甲追及乙的时间是 .
(3)一个两位数,个位上的数字为x,十位上的数为y,这个两位数可表示为_,
如果把十位和个位上的数字对调,新的两位数可表示为 .
(4)若甲、乙、丙、丁四种草药重量的比为0.1:1:2:4.7,设乙种草药的重量为x克,则甲、丙、丁四种草药的重量可分别表示为 克, 克, 克.
(5)甲、乙两人分别从相距20千米的A,B两地出发相向而行,甲先出发1小时,甲的速度是a千米/时,乙的速度是b千米/时,求乙出发多少时间,甲、乙二人相遇.若设乙出发X小时,甲、乙二人相遇,则依题意列方程应为
2.选择题:(5分× 3= 15分)
(1)甲、乙二人从同一地点出发去某地,若甲先走2小时,乙从后面追赶,则当乙追上甲时( )
A甲、乙二人所走路程相等 B.乙走的路程比甲多
C.乙比甲多走2小时 D.以上答案均不对
(2)一张试卷,只有25道选择题,做对一题得4分,做错~题倒扣 1分,某学生做了全部试题,共得70分,他做对了( )道题
A 17 B 18 C 19 D 20
(3)一件工作,甲队独做10天可以完成,乙队独做15天可以完成,若两队合做,( )
天可以完成
A.25 B.12.5 C.6 D.无法确定
3.列方程解应用题:(15分×4=60分)
(1)一条铁丝,第一次用去它的一半少 1米,第二次用去剩下的一半多 1米,结果还剩下3米,求这条铁丝原来长多少米?
(2)永盛电子有限公司向工商银行申请了甲乙两种贷款,共计68万元,每年付出利息8.42万元.甲种贷款每年的利率是 12%,乙种贷款每年的利率是 13%,求这两种贷款的数额是多少?
(3)甲列车从A地以50千米/时的速度开往B地,1小时后,乙列车从B地以70千米对的速度开往A地,如果A,B两地相距200千米,求两车相遇点距A地多远?
(4)某商店买进一批水果,进价每箱20元,计划零售时赚利30%,在卖出这批水果的又15箱时已盈利300元,问这个商店这次买进多少箱水果?
【素质优化训练】
1. 选择题:
(1)一个三位数的个位数字是7,若把个位数字移到首位,则新数比原数的5倍还多86,求这个三位数,设这个三位数的前两位数为x,则列出的方程应是( ).
A.=10x+7 B.700+x-86=5(10x+7)
C. =x+7 D.5(700+x)=x+7+86
(2)甲、乙二人在400米的环形跑道上练习跑步,若同向跑,甲a分钟可超过乙一圈;若反向跑二人每隔b分钟相遇一次,则甲、乙速度之比为( )
A. B.
C. D.
(3)甲、乙、丙三人各有贺年片若干张要互相赠送,先由甲送乙、丙,所送的张数等于乙、丙原来的张数;再由乙送给甲、丙现在的张数;后由丙送甲、乙现在的张数,互送后每人各有32张,则原来每人各有贺年片( )张
A. 甲16,乙28,丙52 B. 甲52,乙16,丙28
C. 甲28,乙16,丙52 D. 甲52,乙28,丙16
(4)将55分成四个数,如果第一个数加上1,第二个数减去1,第三个数乘以2,第四个数除以3,所得的数都相同,那么这四个数分别是()
A.9,11,5,30 B.9,12,4,30
C.9,11,6,29 D.9,11,7,28
2.列方程解应用题:
(1)某学生骑自行车从学校去市内,先以12千米/时的速度下坡,又以9千米/时的速度通过平路,到达市内共用55分钟,返回时,他以8千米/时的速度通过平路,又以4千米/时的速度上坡,回到学校又用1小时.求从学校到市内有多少千米?
(2)汽车若干辆装运一批货物,如果每辆汽车装3.5吨,那么这批货物就有2吨不能运走;如果每辆汽车装4吨,那么装完这批货物后,还可以装其他货物一吨,这批货物共有多少吨?
(3)一船顺水航行24千米后又返回共用 2小时,而顺水航行8千米,逆水航行18千米,共用1小时,求水流速度和船在静水中的速度?
(4)甲、乙二人分别由A,B两地沿同一路线同时相向而行,在离B地12千米相遇后分别到达B,A两地,然后立即返回,在第一次相遇后6小时,两人又在离A地6千米处中遇,求A,B两地的距离及甲、乙二人的速度?
(5)一个六位数,左边第一位上的数字是1,这个六位数乘以3以后,仍是一个六位数,这个新的六位数恰好是把首位上的数字移到个位,而其余各位上的数字相应向左移动一位,求原来的六位数?
(6)有酒水混合液两种,甲种混合液中酒是水的3倍,乙种混合液中,水是酒的5倍现在要把这两种混合液混合成酒与水各占一半的溶液14升问甲、乙两种溶液应各取多少升?
(7)一组园丁要把两片草地的草割完,大的一片比小的一片大1倍.上午全体组员都割大片草地,下午一半组员仍留在大片草地,收工时正好把大片草地割完,另一半组员去割小片草地,收工时还剩下一部分没割完,第二天由一个园丁用一天时间恰好割完,问这组园丁共多少人?
(8)现在是10点和11点之间的某一时刻,在这之后6分钟,分针的位置与在这之前3分钟的时针的位置反向成一直线,求现在的时刻?
(9)某人下午六点多外出时,手表时针与分针的夹角为110°,下午约七点回家时,发现手表时针与分针的夹角又是110”,问他外出了多少时间?
(10)小王同时点燃粗细不同长短一样的两支蜡烛,已知粗的燃烧完要用4小时,细的燃烧完要用3小时,过一段时间后,小王把两支蜡烛同时熄灭,这时剩下的蜡烛细的是粗的,求小王点燃蜡烛的时间是多少?
(11)从两个重量分别为 12千克和 8千克并且含银的百分数不同的合金上各切下重量相同的两块,把所切下的每块与另一块剩余的合金混合,熔炼后合金含银的百分数相同,求所切下的合金的重量是多少?
【生活实际运用】
A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台已知从A市调运一台机器到C市、D市的运费分别为4百元和8百元;从B市调运一台机器到C市、D市的运费分别为3百元和5百元
(1)设B市运往C市机器x台,用x的代数式表示总运费W;
(2)若要求总运费不超过9千元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
【知识探究学习】
寻找数学解题捷径的五种方法(二)
4.巧避“非必求成份”,寻找解题捷径
在解题过程中,往往有些步骤和环节并不是非有不可的,这些可称为“非必求成份”,解题时若能明确解题的最终目的,巧妙避开“非必求成份”,就能省时省力,提高解题速度.
5.利用数形结合,寻找解题捷径数与形是可以相互转化为利用的,有些代数问题若借助于其几何意义,就能使问题直观明了,解法简化.
参考答案
【同步达纲练习】
1.(1)(18x+4); (2)6.5,0.5米/秒,13秒; (3)10y+x,10x+y; (4)0.1x,2x 4.7x;(5)a(x+1)+bx=20.
2.A C C
3.略
【素质优化训练】
1.(1)B;(2)D;
(3) D.(提示:由题意得,互送后每人各有32张,则3人共有96张,设甲有X张,则乙、丙共有(96-x)张,甲送乙、丙后剩下[x-(96-x)]张,乙送甲后,甲有2[x-(96-x)]张,丙送甲后,甲有4[x-(96-x)]张,列方程为:4[x-(96-x)]=32.解得x=52,同样方法能可求出乙、丙的张数);(4)A.(提示:可设变化后的数为x,则四个数分别是x-1,x+1,,3x,可列方程为x-1+x+1++3x=55).
2.(1)设平路长为x千米,则坡路长为12()千米,学校到市内的路程为[12()+x]千米,根据题意,得+=1,x=6. 12() +x=9.
(2)设这批货共有x吨,根据题意,得
(3)由题意可知逆水速度为18千米/时,设船顺水速度为x千米/时,则水流速度为千米/时,船在静水中的速度为千米/时,根据题意,得(1-1)x=8,x=24,.
(4)由题意可知第一次相遇用了3小时,甲速比乙速快2千米/时,设A、B两地距离为x千米,则甲速为千米/时,根据题意,得,x=30, =6.
(5)设原六位数的后五位数为x,则原六位数为100000+x,根据题意得3(100000+x)=10x+1,x=42875,100000+42857=142857.
(6)设甲种酒取x升,则乙种酒取 (14-x)升,根据题意,得x+(14-x)=7,x=8.14-x=6.
(7)设这组园丁共x人,根据题意,得 x=2(x+1),x=8.
(8)设现在的时刻是10点x分,根据题意,得6(x+6)+[60-(x-3)]=180,x=15.
(9)设他外出了x分钟,根据题意,得6x-x=220,x=40.
(10)解:令粗,细蜡烛的长度都为1,设点燃烛的时间是x小时,根据意,得1-=3(1-),x=2.
(11)设辅助未知数,设切下合金的重量是x千克,第一块合金含银a%,第二块合金含银b%,(a≠b).根据题意,得,整理得5(a-b)x=24(a-b), ∵a≠b, ∴x=4.
【生活实际运用】
1.①W=2x+86 ②3种 ③8600元
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、 方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
初三一元二次方程训练题 1 姓名
一、填空题:(3、4、5 各3分,其余每空2分,共39分)
⒈ 把方程 化成一般式是 ;
2.关于 的方程 中, 二次项是 ; 常数项是 ;
一次项是 ;
⒊ 方程 的根是 ; ⒋ 方程 的根是 ;
⒌ 方程 的根是 ;
⒍ ⒎
⒏ ⒐
二、选择题(6分×3=18分)
1.在选择方程 , 中,应选一元二次方程的个数为-------------------( )
A 3 个 B 4 个 C 5 个 D 6 个
⒉ 方程 的实数根的个数是------------------------------------------------------------------- ( )
A 1个 B 2 个 C 0 个 D 以上答案都不对
⒊ 方程 的根是 ----------------------------------------------------------------( )
A B C D
三、解下列方程 ( 8分×4=32分)
(因式分解法) (因式分解法)
(配方法) (求根公式法)
四、解关于 的方程 ( 11 分 )
(6分) (5分)
五、选作
⑴ 已知两数的和是 , 积是 , 求这两数.(10分)
⑵ 已知 、 、 为三角形的三边, 求证 ∶方程 没有实数根 (10分)
中考题型:观察下列等式: ,用含自然数 的等式表示这种规律为
1.填空题:(5分×5=25分)
(1)我国1978年末城乡居民的存款为X亿元;1988年末的存款比1978年末的存款的18倍还多4亿元,则1988年末的存款为 亿元.
(2)甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,然后甲再追乙,那么在追及问题中,甲、乙二人的路程差是 米,甲、乙的速度差是——;甲追及乙的时间是 .
(3)一个两位数,个位上的数字为x,十位上的数为y,这个两位数可表示为_,
如果把十位和个位上的数字对调,新的两位数可表示为 .
(4)若甲、乙、丙、丁四种草药重量的比为0.1:1:2:4.7,设乙种草药的重量为x克,则甲、丙、丁四种草药的重量可分别表示为 克, 克, 克.
(5)甲、乙两人分别从相距20千米的A,B两地出发相向而行,甲先出发1小时,甲的速度是a千米/时,乙的速度是b千米/时,求乙出发多少时间,甲、乙二人相遇.若设乙出发X小时,甲、乙二人相遇,则依题意列方程应为
2.选择题:(5分× 3= 15分)
(1)甲、乙二人从同一地点出发去某地,若甲先走2小时,乙从后面追赶,则当乙追上甲时( )
A甲、乙二人所走路程相等 B.乙走的路程比甲多
C.乙比甲多走2小时 D.以上答案均不对
(2)一张试卷,只有25道选择题,做对一题得4分,做错~题倒扣 1分,某学生做了全部试题,共得70分,他做对了( )道题
A 17 B 18 C 19 D 20
(3)一件工作,甲队独做10天可以完成,乙队独做15天可以完成,若两队合做,( )
天可以完成
A.25 B.12.5 C.6 D.无法确定
3.列方程解应用题:(15分×4=60分)
(1)一条铁丝,第一次用去它的一半少 1米,第二次用去剩下的一半多 1米,结果还剩下3米,求这条铁丝原来长多少米?
(2)永盛电子有限公司向工商银行申请了甲乙两种贷款,共计68万元,每年付出利息8.42万元.甲种贷款每年的利率是 12%,乙种贷款每年的利率是 13%,求这两种贷款的数额是多少?
(3)甲列车从A地以50千米/时的速度开往B地,1小时后,乙列车从B地以70千米对的速度开往A地,如果A,B两地相距200千米,求两车相遇点距A地多远?
(4)某商店买进一批水果,进价每箱20元,计划零售时赚利30%,在卖出这批水果的又15箱时已盈利300元,问这个商店这次买进多少箱水果?
【素质优化训练】
1. 选择题:
(1)一个三位数的个位数字是7,若把个位数字移到首位,则新数比原数的5倍还多86,求这个三位数,设这个三位数的前两位数为x,则列出的方程应是( ).
A.=10x+7 B.700+x-86=5(10x+7)
C. =x+7 D.5(700+x)=x+7+86
(2)甲、乙二人在400米的环形跑道上练习跑步,若同向跑,甲a分钟可超过乙一圈;若反向跑二人每隔b分钟相遇一次,则甲、乙速度之比为( )
A. B.
C. D.
(3)甲、乙、丙三人各有贺年片若干张要互相赠送,先由甲送乙、丙,所送的张数等于乙、丙原来的张数;再由乙送给甲、丙现在的张数;后由丙送甲、乙现在的张数,互送后每人各有32张,则原来每人各有贺年片( )张
A. 甲16,乙28,丙52 B. 甲52,乙16,丙28
C. 甲28,乙16,丙52 D. 甲52,乙28,丙16
(4)将55分成四个数,如果第一个数加上1,第二个数减去1,第三个数乘以2,第四个数除以3,所得的数都相同,那么这四个数分别是()
A.9,11,5,30 B.9,12,4,30
C.9,11,6,29 D.9,11,7,28
2.列方程解应用题:
(1)某学生骑自行车从学校去市内,先以12千米/时的速度下坡,又以9千米/时的速度通过平路,到达市内共用55分钟,返回时,他以8千米/时的速度通过平路,又以4千米/时的速度上坡,回到学校又用1小时.求从学校到市内有多少千米?
(2)汽车若干辆装运一批货物,如果每辆汽车装3.5吨,那么这批货物就有2吨不能运走;如果每辆汽车装4吨,那么装完这批货物后,还可以装其他货物一吨,这批货物共有多少吨?
(3)一船顺水航行24千米后又返回共用 2小时,而顺水航行8千米,逆水航行18千米,共用1小时,求水流速度和船在静水中的速度?
(4)甲、乙二人分别由A,B两地沿同一路线同时相向而行,在离B地12千米相遇后分别到达B,A两地,然后立即返回,在第一次相遇后6小时,两人又在离A地6千米处中遇,求A,B两地的距离及甲、乙二人的速度?
(5)一个六位数,左边第一位上的数字是1,这个六位数乘以3以后,仍是一个六位数,这个新的六位数恰好是把首位上的数字移到个位,而其余各位上的数字相应向左移动一位,求原来的六位数?
(6)有酒水混合液两种,甲种混合液中酒是水的3倍,乙种混合液中,水是酒的5倍现在要把这两种混合液混合成酒与水各占一半的溶液14升问甲、乙两种溶液应各取多少升?
(7)一组园丁要把两片草地的草割完,大的一片比小的一片大1倍.上午全体组员都割大片草地,下午一半组员仍留在大片草地,收工时正好把大片草地割完,另一半组员去割小片草地,收工时还剩下一部分没割完,第二天由一个园丁用一天时间恰好割完,问这组园丁共多少人?
(8)现在是10点和11点之间的某一时刻,在这之后6分钟,分针的位置与在这之前3分钟的时针的位置反向成一直线,求现在的时刻?
(9)某人下午六点多外出时,手表时针与分针的夹角为110°,下午约七点回家时,发现手表时针与分针的夹角又是110”,问他外出了多少时间?
(10)小王同时点燃粗细不同长短一样的两支蜡烛,已知粗的燃烧完要用4小时,细的燃烧完要用3小时,过一段时间后,小王把两支蜡烛同时熄灭,这时剩下的蜡烛细的是粗的,求小王点燃蜡烛的时间是多少?
(11)从两个重量分别为 12千克和 8千克并且含银的百分数不同的合金上各切下重量相同的两块,把所切下的每块与另一块剩余的合金混合,熔炼后合金含银的百分数相同,求所切下的合金的重量是多少?
【生活实际运用】
A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台已知从A市调运一台机器到C市、D市的运费分别为4百元和8百元;从B市调运一台机器到C市、D市的运费分别为3百元和5百元
(1)设B市运往C市机器x台,用x的代数式表示总运费W;
(2)若要求总运费不超过9千元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
【知识探究学习】
寻找数学解题捷径的五种方法(二)
4.巧避“非必求成份”,寻找解题捷径
在解题过程中,往往有些步骤和环节并不是非有不可的,这些可称为“非必求成份”,解题时若能明确解题的最终目的,巧妙避开“非必求成份”,就能省时省力,提高解题速度.
5.利用数形结合,寻找解题捷径数与形是可以相互转化为利用的,有些代数问题若借助于其几何意义,就能使问题直观明了,解法简化.
参考答案
【同步达纲练习】
1.(1)(18x+4); (2)6.5,0.5米/秒,13秒; (3)10y+x,10x+y; (4)0.1x,2x 4.7x;(5)a(x+1)+bx=20.
2.A C C
3.略
【素质优化训练】
1.(1)B;(2)D;
(3) D.(提示:由题意得,互送后每人各有32张,则3人共有96张,设甲有X张,则乙、丙共有(96-x)张,甲送乙、丙后剩下[x-(96-x)]张,乙送甲后,甲有2[x-(96-x)]张,丙送甲后,甲有4[x-(96-x)]张,列方程为:4[x-(96-x)]=32.解得x=52,同样方法能可求出乙、丙的张数);(4)A.(提示:可设变化后的数为x,则四个数分别是x-1,x+1,,3x,可列方程为x-1+x+1++3x=55).
2.(1)设平路长为x千米,则坡路长为12()千米,学校到市内的路程为[12()+x]千米,根据题意,得+=1,x=6. 12() +x=9.
(2)设这批货共有x吨,根据题意,得
(3)由题意可知逆水速度为18千米/时,设船顺水速度为x千米/时,则水流速度为千米/时,船在静水中的速度为千米/时,根据题意,得(1-1)x=8,x=24,.
(4)由题意可知第一次相遇用了3小时,甲速比乙速快2千米/时,设A、B两地距离为x千米,则甲速为千米/时,根据题意,得,x=30, =6.
(5)设原六位数的后五位数为x,则原六位数为100000+x,根据题意得3(100000+x)=10x+1,x=42875,100000+42857=142857.
(6)设甲种酒取x升,则乙种酒取 (14-x)升,根据题意,得x+(14-x)=7,x=8.14-x=6.
(7)设这组园丁共x人,根据题意,得 x=2(x+1),x=8.
(8)设现在的时刻是10点x分,根据题意,得6(x+6)+[60-(x-3)]=180,x=15.
(9)设他外出了x分钟,根据题意,得6x-x=220,x=40.
(10)解:令粗,细蜡烛的长度都为1,设点燃烛的时间是x小时,根据意,得1-=3(1-),x=2.
(11)设辅助未知数,设切下合金的重量是x千克,第一块合金含银a%,第二块合金含银b%,(a≠b).根据题意,得,整理得5(a-b)x=24(a-b), ∵a≠b, ∴x=4.
【生活实际运用】
1.①W=2x+86 ②3种 ③8600元
展开全部
一元二次方程测试题
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、 方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
27将一块长比宽形CM的长方形铁皮四角各剪去一个边长为4CM的小正方行,做成一个无盖的盒子,已知盒子的体积是280的3次方,求原铁皮的边长各是多少
28 某军舰以20节的速度由西向东航行,一艘电子侦察
船以30节的速度由南向北航行,它能侦察出周围50
海里(包括50海里)范围内的目标.如图,当该军
舰行至A处时,电子侦察船正位于A处正南方向的B处,
且AB=90海里.如果军舰和侦察船仍按原速度沿原方
向继续航行,那么航行途中侦察船能否侦察到这艘军
舰 如果能,最早何时能侦察到 如果不能,请说明
理由.
29 两列火车分别行使在两条平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
1)求两车的速度和以及两车相向而行时慢车驶过快车某个窗口所用的时间;
2)如果两车同时同向而行,慢车的速度不低于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头,所需时间至少为多少秒?
30 一组学生乘汽车去旅游,预计共需车费120元,后来多了2人,车费仍不变,这样每人可少摊3元,原来这组学生共有多少人?
1.甲乙二人都以不变的速度在环行路上跑步,如果同时同地出发.相向而行.每隔2分相遇一次,如果同时相向而行,每隔6分相隅一次.以知甲比乙跑的快,甲乙每分各跑多少圈?
2.用一块A型钢板可制成2块C型钢板.一块D型钢板,用一块B型钢板可制成一块C型钢板,两快D型钢板.现需15块D型钢板.恰好用A型钢板,B型钢板各多少块?
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、 方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
27将一块长比宽形CM的长方形铁皮四角各剪去一个边长为4CM的小正方行,做成一个无盖的盒子,已知盒子的体积是280的3次方,求原铁皮的边长各是多少
28 某军舰以20节的速度由西向东航行,一艘电子侦察
船以30节的速度由南向北航行,它能侦察出周围50
海里(包括50海里)范围内的目标.如图,当该军
舰行至A处时,电子侦察船正位于A处正南方向的B处,
且AB=90海里.如果军舰和侦察船仍按原速度沿原方
向继续航行,那么航行途中侦察船能否侦察到这艘军
舰 如果能,最早何时能侦察到 如果不能,请说明
理由.
29 两列火车分别行使在两条平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
1)求两车的速度和以及两车相向而行时慢车驶过快车某个窗口所用的时间;
2)如果两车同时同向而行,慢车的速度不低于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头,所需时间至少为多少秒?
30 一组学生乘汽车去旅游,预计共需车费120元,后来多了2人,车费仍不变,这样每人可少摊3元,原来这组学生共有多少人?
1.甲乙二人都以不变的速度在环行路上跑步,如果同时同地出发.相向而行.每隔2分相遇一次,如果同时相向而行,每隔6分相隅一次.以知甲比乙跑的快,甲乙每分各跑多少圈?
2.用一块A型钢板可制成2块C型钢板.一块D型钢板,用一块B型钢板可制成一块C型钢板,两快D型钢板.现需15块D型钢板.恰好用A型钢板,B型钢板各多少块?
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一元二次方程测试题
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、
方程x2=
的根为
。
2、
方程(x+1)2-2(x-1)2=6x-5的一般形式是
。
3、
关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为
。
4、
已知二次三项式x2+2mx+4-m2是一个完全平方式,则m=
。
5、
已知
+(b-1)2=0,当k为
时,方程kx2+ax+b=0有两个不等的实数根。
6、
关于x的方程mx2-2x+1=0只有一个实数根,则m=
。
7、
请写出一个根为1,另一个根满足-1<x<1的一元二次方程是
。
8、
关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m=
。
9、
已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2=
,则x1,x2=
。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为
立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式:
。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是(
)
A、任意实数
B、m≠1
C、m≠-1
D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是(
)
A、
若x2=4,则x=2
B、若3x2=bx,则x=2
C、
x2+x-k=0的一个根是1,则k=2
D、若分式
的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是(
)
A、无实数根
B、有两个不相等的实数根
C、两根互为倒数
D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于(
)。
A、-1
B、-4
C、4
D、3
15、已知方程(
)2-5(
)+6=0,设
=y则可变为(
)。
A、y2+5y+6=0
B、y2-5y+6=0
C、y2+5y-6=0
D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为(
)
A、100(1+x)2=800
B、100+100×2x=800
C、100+100×3x=800
D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则(
)
A、两根之和为-1.5
B、两根之差为-1.5
C、两根之积为-1.5
D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=(
)
A、2
B、-2
C、-1
D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0
20、2x2-5x+1=0(配方法)
21、x(8+x)=16
22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
27将一块长比宽形CM的长方形铁皮四角各剪去一个边长为4CM的小正方行,做成一个无盖的盒子,已知盒子的体积是280的3次方,求原铁皮的边长各是多少
28
某军舰以20节的速度由西向东航行,一艘电子侦察
船以30节的速度由南向北航行,它能侦察出周围50
海里(包括50海里)范围内的目标.如图,当该军
舰行至A处时,电子侦察船正位于A处正南方向的B处,
且AB=90海里.如果军舰和侦察船仍按原速度沿原方
向继续航行,那么航行途中侦察船能否侦察到这艘军
舰
如果能,最早何时能侦察到
如果不能,请说明
理由.
29
两列火车分别行使在两条平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
1)求两车的速度和以及两车相向而行时慢车驶过快车某个窗口所用的时间;
2)如果两车同时同向而行,慢车的速度不低于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头,所需时间至少为多少秒?
30
一组学生乘汽车去旅游,预计共需车费120元,后来多了2人,车费仍不变,这样每人可少摊3元,原来这组学生共有多少人?
1.甲乙二人都以不变的速度在环行路上跑步,如果同时同地出发.相向而行.每隔2分相遇一次,如果同时相向而行,每隔6分相隅一次.以知甲比乙跑的快,甲乙每分各跑多少圈?
2.用一块A型钢板可制成2块C型钢板.一块D型钢板,用一块B型钢板可制成一块C型钢板,两快D型钢板.现需15块D型钢板.恰好用A型钢板,B型钢板各多少块?
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、
方程x2=
的根为
。
2、
方程(x+1)2-2(x-1)2=6x-5的一般形式是
。
3、
关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为
。
4、
已知二次三项式x2+2mx+4-m2是一个完全平方式,则m=
。
5、
已知
+(b-1)2=0,当k为
时,方程kx2+ax+b=0有两个不等的实数根。
6、
关于x的方程mx2-2x+1=0只有一个实数根,则m=
。
7、
请写出一个根为1,另一个根满足-1<x<1的一元二次方程是
。
8、
关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m=
。
9、
已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2=
,则x1,x2=
。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为
立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式:
。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是(
)
A、任意实数
B、m≠1
C、m≠-1
D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是(
)
A、
若x2=4,则x=2
B、若3x2=bx,则x=2
C、
x2+x-k=0的一个根是1,则k=2
D、若分式
的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是(
)
A、无实数根
B、有两个不相等的实数根
C、两根互为倒数
D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于(
)。
A、-1
B、-4
C、4
D、3
15、已知方程(
)2-5(
)+6=0,设
=y则可变为(
)。
A、y2+5y+6=0
B、y2-5y+6=0
C、y2+5y-6=0
D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为(
)
A、100(1+x)2=800
B、100+100×2x=800
C、100+100×3x=800
D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则(
)
A、两根之和为-1.5
B、两根之差为-1.5
C、两根之积为-1.5
D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=(
)
A、2
B、-2
C、-1
D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0
20、2x2-5x+1=0(配方法)
21、x(8+x)=16
22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,共用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
27将一块长比宽形CM的长方形铁皮四角各剪去一个边长为4CM的小正方行,做成一个无盖的盒子,已知盒子的体积是280的3次方,求原铁皮的边长各是多少
28
某军舰以20节的速度由西向东航行,一艘电子侦察
船以30节的速度由南向北航行,它能侦察出周围50
海里(包括50海里)范围内的目标.如图,当该军
舰行至A处时,电子侦察船正位于A处正南方向的B处,
且AB=90海里.如果军舰和侦察船仍按原速度沿原方
向继续航行,那么航行途中侦察船能否侦察到这艘军
舰
如果能,最早何时能侦察到
如果不能,请说明
理由.
29
两列火车分别行使在两条平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
1)求两车的速度和以及两车相向而行时慢车驶过快车某个窗口所用的时间;
2)如果两车同时同向而行,慢车的速度不低于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头,所需时间至少为多少秒?
30
一组学生乘汽车去旅游,预计共需车费120元,后来多了2人,车费仍不变,这样每人可少摊3元,原来这组学生共有多少人?
1.甲乙二人都以不变的速度在环行路上跑步,如果同时同地出发.相向而行.每隔2分相遇一次,如果同时相向而行,每隔6分相隅一次.以知甲比乙跑的快,甲乙每分各跑多少圈?
2.用一块A型钢板可制成2块C型钢板.一块D型钢板,用一块B型钢板可制成一块C型钢板,两快D型钢板.现需15块D型钢板.恰好用A型钢板,B型钢板各多少块?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |