计算:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/(2^32)-1=?
1个回答
展开全部
:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^8-1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^16-1)(2^16+1)/[(2^32)-1]
=(2^32-1)/[(2^32)-1]
=1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^8-1)(2^8+1)(2^16+1)/[(2^32)-1]
=(2^16-1)(2^16+1)/[(2^32)-1]
=(2^32-1)/[(2^32)-1]
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询