如果实数x,y满足x∧2+y∧2-4x+3=0.则y/x的取值范围是
4个回答
展开全部
如果实数x,y满足x²+y²-4x+3=0.则y/x的取值范围是
解:x²+y²-4x+3=(x-2)²+y²-1=0,即有(x-2)²+y²=1.
这是一个圆心在(2,0),半径R=1的园。把园的方程改写成参数形式:
令x=2+cost,y=sint,t∈R,
则u=y/x=sint/(2+cost)............(1)
令du/dt=[(2+cost)cost-sint(-sint)]/(2+cost)²=(2cost+cos²t+sin²t)/(2+cost)²
=(1+2cost)/(2+cost)²=0
得cost=-1/2,sint=±√(1-1/4)=±√3/2,代入(1)式,即得u的极值=±(√3/2)/(2-1/2)=±√3/3
也就是-√3/3≤y/x≤√3/3
解:x²+y²-4x+3=(x-2)²+y²-1=0,即有(x-2)²+y²=1.
这是一个圆心在(2,0),半径R=1的园。把园的方程改写成参数形式:
令x=2+cost,y=sint,t∈R,
则u=y/x=sint/(2+cost)............(1)
令du/dt=[(2+cost)cost-sint(-sint)]/(2+cost)²=(2cost+cos²t+sin²t)/(2+cost)²
=(1+2cost)/(2+cost)²=0
得cost=-1/2,sint=±√(1-1/4)=±√3/2,代入(1)式,即得u的极值=±(√3/2)/(2-1/2)=±√3/3
也就是-√3/3≤y/x≤√3/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x∧2+y∧2-4x+3=0
(x-2)^2+y^2=1,
y/x的取值范围:-√3/3<=y/x<=√3/3
(x-2)^2+y^2=1,
y/x的取值范围:-√3/3<=y/x<=√3/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x∧2+y∧2-4x+3=0表示以点(2,0)为圆心1为半径的圆,y/x表示圆上任一点与原点连线的斜率,当该线与圆相切时能取得最大值和最小值,得范围是[-√3/3,√3/3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询