高三数学解析几何,求解
已知椭圆C:x2/2+y2=1的左右焦点分别是f1,f2,下顶点为A,点P是椭圆上的任一点,圆M是以PF2为直经的圆当圆的面积为派/8求PA所在直线的方程当圆M与直线AF...
已知椭圆C:x2/2+y2=1的左右焦点分别是f1,f2,下顶点为A,点P是椭圆上的任一点,圆M是以PF2为直经的圆 当圆的面积为派/8求PA所在直线的方程 当圆M与直线AF1相切时求圆M的方程 求证圆M总与某个定圆相切
展开
3个回答
展开全部
已知椭圆C:x2/2+y2=1的左右焦点分别是f1,f2,下顶点为A,点P是椭圆上的任一点,圆M是以PF2为直经的圆 当圆的面积为派/8求PA所在直线的方程 当圆M与直线AF1相切时求圆M的方程 求证圆M总与某个定圆相切
解析:∵椭圆C: x^2/2+y2=1
∴c^2=a^2-b^2=2-1=1==>F2(1,0)
∵S(圆M)= πr^2=π/8==>r=√2/4
设P(x,y)
|PF2|^2=(x-1)^2+y^2=1/2
X^2+2y^2=2
二者联立解得x1=3(不合题意舍),x2=1,y2=±√2/2
∴P(1,-√2/2),或P(1,√2/2)
∵A(0,-1)
∴PA所在直线的方程为y=(1+√2/2)x-1 或y=(1-√2/2)x-1
直线AF1方程:x+y+1=0
当圆M与直线AF1相切时, 圆M的某一直径必垂直直线AF1
直线AF2方程:x-y-1=0
∴AF2⊥AF1, 即P与A重合
∴PF2中点坐标(1/2,-1/2)
|PF2|=√2
∴圆M方程为(x-1/2)^2+(y+1/2)^2=1/2
解析:∵椭圆C: x^2/2+y2=1
∴c^2=a^2-b^2=2-1=1==>F2(1,0)
∵S(圆M)= πr^2=π/8==>r=√2/4
设P(x,y)
|PF2|^2=(x-1)^2+y^2=1/2
X^2+2y^2=2
二者联立解得x1=3(不合题意舍),x2=1,y2=±√2/2
∴P(1,-√2/2),或P(1,√2/2)
∵A(0,-1)
∴PA所在直线的方程为y=(1+√2/2)x-1 或y=(1-√2/2)x-1
直线AF1方程:x+y+1=0
当圆M与直线AF1相切时, 圆M的某一直径必垂直直线AF1
直线AF2方程:x-y-1=0
∴AF2⊥AF1, 即P与A重合
∴PF2中点坐标(1/2,-1/2)
|PF2|=√2
∴圆M方程为(x-1/2)^2+(y+1/2)^2=1/2
展开全部
先求出椭圆的焦点坐标,由焦点公式:c=sqrt(a^2-b^2),得到f2的坐标为(1,0),A点坐标为(0,-1)。
设P点坐标为(x0,y0),则有:
x0^2/2+y0^2=1;
pi/4*((x0-1)^2+y0^2)=pi/8;
解方程组:x0=1或3,由于x0<sqrt(2),所以x0=1,y0=sqrt(2)/2。
所以,PA所在直线方程为:y=(1+sqrt(2)/2)*x-1
设P点坐标为(x0,y0),则有:
x0^2/2+y0^2=1;
pi/4*((x0-1)^2+y0^2)=pi/8;
解方程组:x0=1或3,由于x0<sqrt(2),所以x0=1,y0=sqrt(2)/2。
所以,PA所在直线方程为:y=(1+sqrt(2)/2)*x-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由椭圆方程可知,a^2=2,b^2=1,C^2=1
π/8=π(d/2)^2推出d^2=2即(PF2)^2=2
显然P位于椭圆与y轴焦点,即上下顶点。
所以PA所在直线方程即为y轴,即x=0.
第二问计算比较复杂,难以编写。
你可以尝试设P(X0,YO)
则M点坐标(x0+1/2,yo/2)
点M到直线距离l就出来了。
用两点间距离求出PF2长度。然后用l=PF2/2就可以解出了
π/8=π(d/2)^2推出d^2=2即(PF2)^2=2
显然P位于椭圆与y轴焦点,即上下顶点。
所以PA所在直线方程即为y轴,即x=0.
第二问计算比较复杂,难以编写。
你可以尝试设P(X0,YO)
则M点坐标(x0+1/2,yo/2)
点M到直线距离l就出来了。
用两点间距离求出PF2长度。然后用l=PF2/2就可以解出了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询