3个回答
展开全部
∫1/(x²+x-2)=∫1/[(x+2)(x-1)]dx=(1/3)[∫1/(x-1)dx-∫1/(x+2)dx==(1/3)ln|x-1|/|x+2|(上限是正无穷大,下限是负无穷大)
x趋向正无穷大时lim(1/3)ln|x-1|/|x+2|=lim(1/3)ln(x-1)/(x+2)=0
x趋向负无穷大时lim(1/3)ln|x-1|/|x+2|=lim(1/3)ln(-x+1)/(-x-2)=0
故∫1/(x²+x-2)=0
x趋向正无穷大时lim(1/3)ln|x-1|/|x+2|=lim(1/3)ln(x-1)/(x+2)=0
x趋向负无穷大时lim(1/3)ln|x-1|/|x+2|=lim(1/3)ln(-x+1)/(-x-2)=0
故∫1/(x²+x-2)=0
追问
瑕点1和2怎么处理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫dx/(x^2+x-2)=∫dx/[(x+1/2)^2-9/4]=(2/3)∫d(2x/3 +1/3)/[(2x/3+1/3)^2-1]
2x/3+1/3=secu, 2dx/3=[sinu/cosu^2 ]du
原式=∫[sinu/cosu^2]du/[sinu/cosu]=∫du/cosu=∫dsinu/[1-(sinu)^2]=(1/2)[∫dsinu/(1-sinu)+∫dsinu/(1+sinu)]=(1/2)ln[(1+sinu)/(1-sinu)]+C
x→∞, u→0, x从-∞ →+∞ 时,u从0-→0+
∫[-∞,+∞]dx/(x^2+x-2)=∫[0-,0+][sinu/cosu^2]du/(sinu/cosu)=(1/2)(ln1-ln1)=0
2x/3+1/3=secu, 2dx/3=[sinu/cosu^2 ]du
原式=∫[sinu/cosu^2]du/[sinu/cosu]=∫du/cosu=∫dsinu/[1-(sinu)^2]=(1/2)[∫dsinu/(1-sinu)+∫dsinu/(1+sinu)]=(1/2)ln[(1+sinu)/(1-sinu)]+C
x→∞, u→0, x从-∞ →+∞ 时,u从0-→0+
∫[-∞,+∞]dx/(x^2+x-2)=∫[0-,0+][sinu/cosu^2]du/(sinu/cosu)=(1/2)(ln1-ln1)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询