高数问题,急求!!!

设y=y(x),z=z(x)是由方程z=x·g(x+y),G(x,yz)=0所确定,其中g,G分别具有一阶导数和一阶连续偏导数,求dy/dx... 设y=y(x),z=z(x)是由方程z=x·g(x+y),G(x,yz)=0所确定,其中g,G分别具有一阶导数和一阶连续偏导数,求dy/dx 展开
匿名用户
2011-04-21
展开全部
解:由G(x,yz)=0得:
G1+G2•[(dy/dx)•z+y•(dz/dx)]=0 ①
又dz/dx=xg'•(dy/dx) ②
所以由①②得:
G1+G2•[(dy/dx)•z+y•(xg'•(dy/dx))]=0
=>dy/dx=-G1/(G2(z+xyg'))
冰雪狂侠
2011-04-21 · TA获得超过196个赞
知道答主
回答量:224
采纳率:0%
帮助的人:94.9万
展开全部
属于隐函数就导问题,很简单,你看看高数同济第五版第二册的第34页的方程组,学一下就会了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式