
如图,在三角形ABC中,∠ABC=45°,H是高AD和BE的交点 G,F分别是BH和AC的中点 试探究DG,DF之间的关系,并证
4个回答
展开全部
DG=DF
证明:
因为∠ABD=∠DAB=45°
所以AD=BD
因为BE⊥AC,AD⊥BC
所以∠AEB=∠ADC=∠ADB=90°
因为∠C=180°-∠ADC,∠AHE=180°-∠AEB
所以∠C=∠AHE
因为∠AHE=∠BHE
所以∠BHD=∠AHE
所以△HDB全等于△ADC
所以DC=HC,AC=BH
因为G,F分别是BH和AC的中点
所以GH=FC
所以△GHD全等于△DFC
所以DG=DF
证明:
因为∠ABD=∠DAB=45°
所以AD=BD
因为BE⊥AC,AD⊥BC
所以∠AEB=∠ADC=∠ADB=90°
因为∠C=180°-∠ADC,∠AHE=180°-∠AEB
所以∠C=∠AHE
因为∠AHE=∠BHE
所以∠BHD=∠AHE
所以△HDB全等于△ADC
所以DC=HC,AC=BH
因为G,F分别是BH和AC的中点
所以GH=FC
所以△GHD全等于△DFC
所以DG=DF
展开全部
1。由45度得,AD=BD,进而证三角形ADC,BDH全等(ASA)。2。RT三角形中斜边中线等于斜边一半,且由于1中证的全等,所以可得BGD,AFD全等(SSR)。3。所以GD=DF。角BDG=ADF,且因为角BDG+ADG=九十度,所以角GDF等于90度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-04-23
展开全部
2DG=DF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询