7个回答
展开全部
这里我有个小疑惑,就是题目原来是不是说x和y都是正整数,或者保证y>=1,要是这样子的话,就按这样做(以前高中我好像是如下做的):
2x+y-xy=0
x+y=xy-x
x+y=x(y-1)
这里就看出来我说的y>1的作用了,是保证y-1>0
根据ab<=(a+b)^2/4
那么上面等式的右边<=(x+y-1)^2/4
我们令k=x+y
则
k<=(k-1)^2/4
可以解不等式,得到k的最小值是3+2根号2
哦,上面疑惑y>1不用告诉了,因为吧已知变形x=y/(y-2)>0,所以y>2>1了,哈哈,这是隐藏条件,以后要小心!
2x+y-xy=0
x+y=xy-x
x+y=x(y-1)
这里就看出来我说的y>1的作用了,是保证y-1>0
根据ab<=(a+b)^2/4
那么上面等式的右边<=(x+y-1)^2/4
我们令k=x+y
则
k<=(k-1)^2/4
可以解不等式,得到k的最小值是3+2根号2
哦,上面疑惑y>1不用告诉了,因为吧已知变形x=y/(y-2)>0,所以y>2>1了,哈哈,这是隐藏条件,以后要小心!
展开全部
解:设x+y=t,则y=t-x。代入2x+y-xy=0得
2x+(t-x)-x(t-x)=0,整理得:
x^2+(1-t)x+t=0,此方程有根且根为正数,
因此⊿=(1-t)^2-4t>=0,且-(1-t)>0且t>0,
得t>=3+2√2,t的最小值是3+2√2。
2x+(t-x)-x(t-x)=0,整理得:
x^2+(1-t)x+t=0,此方程有根且根为正数,
因此⊿=(1-t)^2-4t>=0,且-(1-t)>0且t>0,
得t>=3+2√2,t的最小值是3+2√2。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先问问你是几年级的?大学的解法是拉格朗日函数
Min x+y
s.t. 2x+y-xy=0
设拉格朗日函数
L=x+y+λ(2x+y-xy)
一阶导 y-2=1/λ
x-1=1/λ
2x+y-xy=0
解方程组x=1+跟号2 或x=1-跟号2(舍)
x+y=2X+1=3+2根号2
如果你不是大学生估计我要浪费采纳率了。刚看到楼上的回答也很精彩。
Min x+y
s.t. 2x+y-xy=0
设拉格朗日函数
L=x+y+λ(2x+y-xy)
一阶导 y-2=1/λ
x-1=1/λ
2x+y-xy=0
解方程组x=1+跟号2 或x=1-跟号2(舍)
x+y=2X+1=3+2根号2
如果你不是大学生估计我要浪费采纳率了。刚看到楼上的回答也很精彩。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2x+y=xy,则2/y+1/x=1,所以x+y=(x+y)(2/y+1/x)=3+2x/y+y/x≥3+2√2,即x+y的最小值是3+2√2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x+y≥2√xy 均值定理
2x+y-xy=0
xy=2x+y
x+y≥2√(2x+y)
所以最小值为2√(2x+y)
2x+y-xy=0
xy=2x+y
x+y≥2√(2x+y)
所以最小值为2√(2x+y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询