
数学题:若a,b,c是正数,a3+b3+c3≥3abc,怎么推出下一步a+b+c/3≥3根号下abc?
3个回答
展开全部
简单代换下,令3次√x=a,3次√y=b,3次√z=c,代入得,
(3次√x)^3+(3次√y)^3+(3次√z)^3=x+y+z ≥3倍3次√xyz,
即a+b+c/3≥3倍3次根号下abc,懂了吗?
(3次√x)^3+(3次√y)^3+(3次√z)^3=x+y+z ≥3倍3次√xyz,
即a+b+c/3≥3倍3次根号下abc,懂了吗?
展开全部
令x=a³,y=b³,z=c³,分别替换a3+b3+c3≥3abc中的a,b,c即可得出结论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这算什么问题?你的条件和结果表达的实质上是一个式子,都是恒成立的。
换句话说只要a,b,c是正数,就可以直接推出a+b+c/3≥3根号下abc,这是基本不等式的推广应用
换句话说只要a,b,c是正数,就可以直接推出a+b+c/3≥3根号下abc,这是基本不等式的推广应用
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询