设数列{an}的前n项和为Sn=a(n+1)-1. (1)求数列{an}的通项公式.
(2)bn=2^n/((an+1)[a(n+1)+1],Tn=b1+b2+……+bn,求证:1/3≤Tn<1...
(2)bn=2^n/((an+1)[a(n+1)+1],Tn=b1+b2+……+bn,求证:1/3≤Tn<1
展开
3个回答
展开全部
Sn=a(n+1)-1.
S(n-1)=an-1 相减
an=a(n+1)-an
a(n+1)=2an 等比数列
a1=S1=a2-1=2a1-1 a1=1 an=2^(n-1)
2. bn=2^n/((an+1)[a(n+1)+1]=2[1/(an+1)-1/(a(n+1)+1)]
Tn=2[1/2-1/3+1/3-1/5+……+1/(an+1)-1/(a(n+1)+1)]
=2[1/2-1/(a(n+1)+1)]
=(2^n-1)/(2^n+1)
=1-2/(2^n+1)
n=1 Tn=1/3 n-->+∽ 2/(2^n+1)-->0 Tn-->1
所以 1/3≤Tn<1
S(n-1)=an-1 相减
an=a(n+1)-an
a(n+1)=2an 等比数列
a1=S1=a2-1=2a1-1 a1=1 an=2^(n-1)
2. bn=2^n/((an+1)[a(n+1)+1]=2[1/(an+1)-1/(a(n+1)+1)]
Tn=2[1/2-1/3+1/3-1/5+……+1/(an+1)-1/(a(n+1)+1)]
=2[1/2-1/(a(n+1)+1)]
=(2^n-1)/(2^n+1)
=1-2/(2^n+1)
n=1 Tn=1/3 n-->+∽ 2/(2^n+1)-->0 Tn-->1
所以 1/3≤Tn<1
2011-04-23
展开全部
(1) an = sn - s(n-1) = a(n+1) - 1 - an +1 = a(n+1) -an
a(n+1) = 2an
s1= a2-1 = a1
a2 = 2a1 = a1 + 1
a1 = 1
an = 2^(n-1)
(2) bn=2^n/((an+1)[a(n+1)+1],
分母请写清楚,包括哪几项
a(n+1) = 2an
s1= a2-1 = a1
a2 = 2a1 = a1 + 1
a1 = 1
an = 2^(n-1)
(2) bn=2^n/((an+1)[a(n+1)+1],
分母请写清楚,包括哪几项
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、Sn=a(n+1)-1,s(n-1)=an-1,sn-s(n-1)=a(n+1)-an=an,a(n+1)=2an;
s1=a2-1=a1=2a1-1,a1=1,an=2^(n-1);
2、bn=2^n/((an+1)[a(n+1)+1]=2^n/(2^(n-1)+1)(2^n+1)=2(1/(2^(n-1)+1)-1/(2^n+1))
Tn=2【(1/(1+1)-1/(2+1))+(1/(2+1)-1/(4+1))+…+(1/(2^(n-1)+1)-1/(2^n+1))】
=2【1/2-1/(2^n+1)】
=1-2/(2^n+1),当n=1时,有最小值Tn=1-2/(2+1)=1/3,当n→∞时,Tn无限接近于1,故1/3≤Tn<1
s1=a2-1=a1=2a1-1,a1=1,an=2^(n-1);
2、bn=2^n/((an+1)[a(n+1)+1]=2^n/(2^(n-1)+1)(2^n+1)=2(1/(2^(n-1)+1)-1/(2^n+1))
Tn=2【(1/(1+1)-1/(2+1))+(1/(2+1)-1/(4+1))+…+(1/(2^(n-1)+1)-1/(2^n+1))】
=2【1/2-1/(2^n+1)】
=1-2/(2^n+1),当n=1时,有最小值Tn=1-2/(2+1)=1/3,当n→∞时,Tn无限接近于1,故1/3≤Tn<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询