求高二理科数学题解答 (图不清楚处:题中2的指数为k-1)
2个回答
展开全部
解:(1)
由于:log2(x)+log2[3*2^(k-1)-x] >=(2k-1) -----[1]
则由真数大于0
得:x>0,且3*2^(k-1)-x>0
设t=2^k (t>0)
则:0<x<(3/2)t
由[1]得:log2{x[3*2^(k-1)-x]}>=(2k-1)log2(2)
log2{3x*2^(k-1)-x^2}>=log2[2^(2k-1)]
即:log2[(3/2)tx-x^2]>=log2[(1/2)t^2]
则:(3/2)tx-x^2>=(1/2)t^2
2x^2-3tx+t^2<=0
(x-t)(2x-t)<=0
则:t/2=<x<=t
又:0<x<(3/2)t
则:x属于[2^(k-1),2^k]
则:f(k)=2^k-2^(k-1)+1=[2*2^(k-1)]-2^(k-1)+1=2^(k-1)+1
[2]
Sn=f(1)+...+f(n)
=[2^0+1]+[2^1+1]+...+[2^(n-1)+1]
=n+[2^0+2^1+...+2^(n-1)]
=n+1*[1-2^n]/[1-2]
=2^(n)+(n-1)
则:Sn-Pn
=[2^(n)+(n-1)]-[n^2+n-1]
=2^(n)-n^2
由y=2^x,及y=x^2图像可知:
n=1时,2^1>1^2,S1>P1
n=2时,2^2=2^2,S2=P2
n=3时,2^3<3^2,S3<P3
n=4时,2^4=4^2,S4=P4
n>=5时,2^n>n^2,Sn>Pn
由于:log2(x)+log2[3*2^(k-1)-x] >=(2k-1) -----[1]
则由真数大于0
得:x>0,且3*2^(k-1)-x>0
设t=2^k (t>0)
则:0<x<(3/2)t
由[1]得:log2{x[3*2^(k-1)-x]}>=(2k-1)log2(2)
log2{3x*2^(k-1)-x^2}>=log2[2^(2k-1)]
即:log2[(3/2)tx-x^2]>=log2[(1/2)t^2]
则:(3/2)tx-x^2>=(1/2)t^2
2x^2-3tx+t^2<=0
(x-t)(2x-t)<=0
则:t/2=<x<=t
又:0<x<(3/2)t
则:x属于[2^(k-1),2^k]
则:f(k)=2^k-2^(k-1)+1=[2*2^(k-1)]-2^(k-1)+1=2^(k-1)+1
[2]
Sn=f(1)+...+f(n)
=[2^0+1]+[2^1+1]+...+[2^(n-1)+1]
=n+[2^0+2^1+...+2^(n-1)]
=n+1*[1-2^n]/[1-2]
=2^(n)+(n-1)
则:Sn-Pn
=[2^(n)+(n-1)]-[n^2+n-1]
=2^(n)-n^2
由y=2^x,及y=x^2图像可知:
n=1时,2^1>1^2,S1>P1
n=2时,2^2=2^2,S2=P2
n=3时,2^3<3^2,S3<P3
n=4时,2^4=4^2,S4=P4
n>=5时,2^n>n^2,Sn>Pn
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询