如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作作⊙O1,⊙O2. (1)求⊙O1的半径
4个回答
展开全部
解:(1)∵正方形ABCD
∴AD=AB=BC=CD
∵O是对角线BD中点
∴OB=OD
在Rt△ABD中由勾股定理得,BD方=AB方-AD方
解出BD=4倍根号2
∴OB=OD=2倍根号2
∵OB,OD为直径
∴半径为根号2
(2)连接01E,O1F
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
同理∠BO1F=90°
∴E,O1,F在同一直线
易证BE=BF=2
∴S△EBF=2*2*二分之一=2
同理另一三角形面积为2
扇形的面积为二分之一πR方=π
∴阴影=2π -4
∴AD=AB=BC=CD
∵O是对角线BD中点
∴OB=OD
在Rt△ABD中由勾股定理得,BD方=AB方-AD方
解出BD=4倍根号2
∴OB=OD=2倍根号2
∵OB,OD为直径
∴半径为根号2
(2)连接01E,O1F
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
同理∠BO1F=90°
∴E,O1,F在同一直线
易证BE=BF=2
∴S△EBF=2*2*二分之一=2
同理另一三角形面积为2
扇形的面积为二分之一πR方=π
∴阴影=2π -4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵四边形ABCD是正方形,且AB=4。
∴AB=AD=BC=DC=4,且∠A=90°。
∴BD=4√2。
又∵O是对角线BD的中点。
∴BO1=OO1=OO2=DO2=√2。
∴⊙O1的半径为√2
∴AB=AD=BC=DC=4,且∠A=90°。
∴BD=4√2。
又∵O是对角线BD的中点。
∴BO1=OO1=OO2=DO2=√2。
∴⊙O1的半径为√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
菁优网上有的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询