极坐标系下的二重积分的计算问题(高等数学一)
对ln(1+x的平方+y的平方)dxdy求二重积分,其中D为x的平方+y的平方<=1,x>=0,y>=0所围成的区域.麻烦哪位高人给解下,最好列出式子还有计算的过程,我的...
对 ln(1+x的平方+y的平方)dxdy求二重积分, 其中D为x的平方+y的平方<=1, x>=0, y>=0 所围成的区域.
麻烦哪位高人给解下, 最好列出式子还有计算的过程,我的答案和正确答案对不上,正郁闷中! 谢谢
正确答案是 pi/4*(ln4-1) 展开
麻烦哪位高人给解下, 最好列出式子还有计算的过程,我的答案和正确答案对不上,正郁闷中! 谢谢
正确答案是 pi/4*(ln4-1) 展开
2个回答
展开全部
∫∫ln(1+x2+y2)dxdy=∫∫ln(1+r2)rdrdθ,x=rcosθ,y=rsinθ
0≤r≤1,0≤θ≤π/2
∴∫∫ln(1+x2+y2)dxdy=∫∫ln(1+r2)rdrdθ
=∫ln(1+r2)rdr∫dθ
=π/2*∫ln(1+r2)rdr(0~1)
=π/4*∫ln(1+r2)dr2
=π/4*[ln(1+r2)*r2-∫r2dln(1+r2)]
=π/4*[ln(1+r2)*r2-∫r2/(1+r2)dr2]
=π/4*[ln2-∫(1-a)/ada]
其中,r自0至1,故ln(1+r2)*r2=2;
a=1+r2,故a自1至2,∫(1-a)/ada=∫1da-∫1/ada=1-ln2
再带回去,就得到:∴∫∫ln(1+x2+y2)dxdy=π/4*[2ln2-1]
注意,2ln2=ln4;r2表示r的平方
0≤r≤1,0≤θ≤π/2
∴∫∫ln(1+x2+y2)dxdy=∫∫ln(1+r2)rdrdθ
=∫ln(1+r2)rdr∫dθ
=π/2*∫ln(1+r2)rdr(0~1)
=π/4*∫ln(1+r2)dr2
=π/4*[ln(1+r2)*r2-∫r2dln(1+r2)]
=π/4*[ln(1+r2)*r2-∫r2/(1+r2)dr2]
=π/4*[ln2-∫(1-a)/ada]
其中,r自0至1,故ln(1+r2)*r2=2;
a=1+r2,故a自1至2,∫(1-a)/ada=∫1da-∫1/ada=1-ln2
再带回去,就得到:∴∫∫ln(1+x2+y2)dxdy=π/4*[2ln2-1]
注意,2ln2=ln4;r2表示r的平方
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
设极坐标参量r,a,a是角度。
r^2=x^2+y^2
dxdy=rdrda
代换,原式=ln(1+r^2)rdrda,积分区间r,[0,1];a[0,pi/2]
分离变量分别积分
da积分的pi/2
ln(1+r^2)rdr
可作适当变换,变为1/2*ln(1+r^2)d(1+r^2)
换元Y=1+r^2,积分范围变为[1,2]
得到1/2*lnYdY
用分部积分得到1/2[YlnY-Y],代入上下限[1,2]得
1/2*(ln4-1)
在乘上da积分的pi/2即得答案。
r^2=x^2+y^2
dxdy=rdrda
代换,原式=ln(1+r^2)rdrda,积分区间r,[0,1];a[0,pi/2]
分离变量分别积分
da积分的pi/2
ln(1+r^2)rdr
可作适当变换,变为1/2*ln(1+r^2)d(1+r^2)
换元Y=1+r^2,积分范围变为[1,2]
得到1/2*lnYdY
用分部积分得到1/2[YlnY-Y],代入上下限[1,2]得
1/2*(ln4-1)
在乘上da积分的pi/2即得答案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询