求不定积分:∫e^x(sinx)^2dx

gorushhunter
2011-04-24 · TA获得超过1581个赞
知道小有建树答主
回答量:565
采纳率:0%
帮助的人:606万
展开全部
首先需要知道cos2x=1-2sin²x
∫[e^x(sin²x)]dx=e^x(sin²x)-∫2e^x(sinxcosx)dx
=e^x(sin²x)-∫e^x(sin2x)dx
=e^x(sin²x)-[e^x(sin2x)-∫e^x2cos2xdx]
=e^x(sin²x-sin2x)+∫e^x2cos2xdx
=e^x(sin²x-sin2x)+∫e^x(2-4sin²x)dx
=e^x(sin²x-sin2x)+2∫(e^x)dx-4∫e^x(sin²x)dx
=e^x(sin²x-sin2x)+2e^x-4∫e^x(sin²x)dx
所以5∫e^x(sin²x)dx=e^x(sin²x-sin2x)+2e^x
所以∫e^x(sin²x)dx=e^x(sin²x-sin2x+2)/5

把答案微分后得到e^x(sin²x),所以答案是正确的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式