展开全部
α ,180K+30<α<180K +90等价于360k+30<α<360k+90,
且180(2K+1)+30<α<180(2K+1)+90,即360k+210<α<360k+270
故A={α|360k+30<α<360k+90且360k+210<α<360k+270k∈Z}。
β , 360k+315<β<360k+405,即360k+315<β<360k+360
且360k<β<360k+45
故B={β|360k<β<360k+45且360k+315<β<360k+360k∈Z},
A∩B={θ|360k+30<θ<360k+45,k∈Z}。
且180(2K+1)+30<α<180(2K+1)+90,即360k+210<α<360k+270
故A={α|360k+30<α<360k+90且360k+210<α<360k+270k∈Z}。
β , 360k+315<β<360k+405,即360k+315<β<360k+360
且360k<β<360k+45
故B={β|360k<β<360k+45且360k+315<β<360k+360k∈Z},
A∩B={θ|360k+30<θ<360k+45,k∈Z}。
更多追问追答
追问
谢谢
追答
你是高一的吧
展开全部
数学必修4
α ,180K+30<α<180K +90等价于360k+30<α<360k+90,
且180(2K+1)+30<α<180(2K+1)+90,即360k+210<α<360k+270
故A={α|360k+30<α<360k+90且360k+210<α<360k+270k∈Z}。
β , 360k+315<β<360k+405,即360k+315<β<360k+360
且360k<β<360k+45
故B={β|360k<β<360k+45且360k+315<β<360k+360k∈Z},
A∩B={θ|360k+30<θ<360k+45,k∈Z}。
α ,180K+30<α<180K +90等价于360k+30<α<360k+90,
且180(2K+1)+30<α<180(2K+1)+90,即360k+210<α<360k+270
故A={α|360k+30<α<360k+90且360k+210<α<360k+270k∈Z}。
β , 360k+315<β<360k+405,即360k+315<β<360k+360
且360k<β<360k+45
故B={β|360k<β<360k+45且360k+315<β<360k+360k∈Z},
A∩B={θ|360k+30<θ<360k+45,k∈Z}。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是关于象限的问题。A集合可以分为两个集合{α|360K+30<α<360K +90,K∈Z}与{α|360K+210<α<360K +270,K∈Z},B集合可写成{β|360k-45<β<360k+45,k∈Z},画图就可知A∩B=={β|360k+30<β<360k+45,k∈Z}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询