求高手帮忙翻译一段话。
Thenarrowertheinputbeam,thehigherthecriticalangleandthesmallerthedeviationofq0from.Th...
The narrower the input beam, the higher the critical angle and the smaller the deviation of q0 from .The guided-wave amplitude is always smaller than that for the soliton beam in a uniform medium and approaches as guiding parameter p ->! 0.
Numerical simulations indicate that beams moving along the grating slowly radiate—an effect not captured by the effective-particle approach. When solitons cross the waveguide, they lose a fraction of their energy because the wing of the soliton spatial spectrum overlaps the spatial spectrum of the guided mode. The radiation rate increases as the incident angle approaches angleαb corresponding to the edge of the first Brillouin zone.12,13 The energy losses caused by the excitation of consecutive waveguides result in the slant soliton beam being trapped in one of the grating channels. This situation is shown in Fig. 1(c). Note that the propagation distance at which trapping occurs is relatively small. Intuitively, it is clear that the larger the incident angle, the higher the channel number at which trapping occurs. Such radiative trapping has much in common with the properties of discrete solitons in waveguide arrays;
翻译完追加100分。 是有关光学格子特性方面的资料。直接google /有道翻译就免了。有点难度。 展开
Numerical simulations indicate that beams moving along the grating slowly radiate—an effect not captured by the effective-particle approach. When solitons cross the waveguide, they lose a fraction of their energy because the wing of the soliton spatial spectrum overlaps the spatial spectrum of the guided mode. The radiation rate increases as the incident angle approaches angleαb corresponding to the edge of the first Brillouin zone.12,13 The energy losses caused by the excitation of consecutive waveguides result in the slant soliton beam being trapped in one of the grating channels. This situation is shown in Fig. 1(c). Note that the propagation distance at which trapping occurs is relatively small. Intuitively, it is clear that the larger the incident angle, the higher the channel number at which trapping occurs. Such radiative trapping has much in common with the properties of discrete solitons in waveguide arrays;
翻译完追加100分。 是有关光学格子特性方面的资料。直接google /有道翻译就免了。有点难度。 展开
展开全部
越狭窄输入射线,越高临界角和越小q0的偏差从。小于那引导挥动高度总是在一个一致的媒介的孤立子射线的并且接近作为引导的参量p - >! 0.
数值模仿表明慢慢地移动沿滤栅辐射安作用的射线没夺取由有效微粒方法。 当孤立子横渡波导时,他们丢失一小部分他们的能量,因为孤立子空间光谱的翼重叠被引导的方式的空间光谱。 辐射率增加,当入射角接近angleαb与第一布里渊相应zone.12的边缘, 13 连贯波导的励磁造成的能量损失导致在其中一种被困住的偏锋孤立子射线刺耳渠道中。 这个情况在图1 (c)显示。 注意诱捕发生的传播距离是相对地小的。 直观地,是确切越大入射角,越高频道数诱捕发生。 这样辐射性诱捕有与分离孤立子相同物产在波导列阵;
数值模仿表明慢慢地移动沿滤栅辐射安作用的射线没夺取由有效微粒方法。 当孤立子横渡波导时,他们丢失一小部分他们的能量,因为孤立子空间光谱的翼重叠被引导的方式的空间光谱。 辐射率增加,当入射角接近angleαb与第一布里渊相应zone.12的边缘, 13 连贯波导的励磁造成的能量损失导致在其中一种被困住的偏锋孤立子射线刺耳渠道中。 这个情况在图1 (c)显示。 注意诱捕发生的传播距离是相对地小的。 直观地,是确切越大入射角,越高频道数诱捕发生。 这样辐射性诱捕有与分离孤立子相同物产在波导列阵;
展开全部
输入光束越窄,更高的临界角和较小的Q0的偏离导波幅度总是比更小的均匀介质中的孤子光束参数p和指导方针-。>! 0。
数值模拟表明,梁慢慢地沿着光栅辐射,一个不通过有效的粒子的方法捕获的影响。当孤子交叉波导,他们失去了他们的部分能量,因为右翼的孤子空间谱重叠的导模空间频谱分析。辐射率增加的方法angleαb入射角对应的第一布里渊zone.12,13能量的结果,在连续波导斜梁正孤子在被困激发光栅渠道之一造成的损失的边缘。这种情况如图。 1(c)项。请注意,传播距离有俘获发生的相对较小。直观地说,很显然,入射角越大,更高的通道数目的捕获发生。这种辐射俘获与有许多共同之处,在波导阵列离散孤子的特性;
数值模拟表明,梁慢慢地沿着光栅辐射,一个不通过有效的粒子的方法捕获的影响。当孤子交叉波导,他们失去了他们的部分能量,因为右翼的孤子空间谱重叠的导模空间频谱分析。辐射率增加的方法angleαb入射角对应的第一布里渊zone.12,13能量的结果,在连续波导斜梁正孤子在被困激发光栅渠道之一造成的损失的边缘。这种情况如图。 1(c)项。请注意,传播距离有俘获发生的相对较小。直观地说,很显然,入射角越大,更高的通道数目的捕获发生。这种辐射俘获与有许多共同之处,在波导阵列离散孤子的特性;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询