展开全部
一. 填空题(每空2分,共30分)
1. 用科学记数法表示0.000043为 。
2.计算:计算 ; __________;
= ; = 。
3.当x 时,分式 有意义;当x 时,分式 的值为零。
4.反比例函数 的图象在第一、三象限,则 的取值范围是 ;在每一象限内y随x的增大而 。
5. 如果反比例函数 过A(2,-3),则m= 。
6. 设反比例函数y= 的图象上有两点A(x1,y1)和B(x2,y2),且当x1<0<x2时,有y1<y2,则m的取值范围是 .
7.如图由于台风的影响,一棵树在离地面 处折断,树顶落在离树干底部 处,则这棵树在折断前(不包括树根)长度是 m.
8. 三角形的两边长分别为3和5,要使这个三角形是直角三角 A D
形,则第三条边长是 . .
9. 如图若正方形ABCD的边长是4,BE=1,在AC上找一点P E
使PE+PB的值最小,则最小值为 。 B C 10.如图,公路PQ和公路MN交于点P,且∠NPQ=30°,
公路PQ上有一所学校A,AP=160米,若有一拖拉机
沿MN方向以18米∕秒的速度行驶并对学校产生影响,
则造成影响的时间为 秒。
二.单项选择题(每小题3分,共18分)
11.在式子 、 、 、 、 、 中,分式的个数有( )
A、2个 B、3个 C、4个 D、5个
12.下面正确的命题中,其逆命题不成立的是( )
A.同旁内角互补,两直线平行 B.全等三角形的对应边相等
C.角平分线上的点到这个角的两边的距离相等 D.对顶角相等
13.下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )
A . B .
C . D.
14.在同一直角坐标系中,函数y=kx+k与 的图像大致是( )
15.如图所示:数轴上点A所表示的数为a,则a的值是( )
A. +1 B.- +1 C. -1 D.
16.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,则DE的长为( ).
A.3 B.4 C.5 D.6
三、解答题:
17.(8分)计算:
(1) (2)
18.(6分)先化简代数式 ,然后选取一个使原式有意义的 的值代入求值.
19.(8分)解方程:
(1) (2)
20.(6分)已知:如图,四边形ABCD,AB=8,BC=6,CD=26,AD=24,且AB⊥BC。
求:四边形ABCD的面积。
21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度 是面条的粗细(横截面积) 的反比例函数,其图像如图所示.
(1)写出 与 的函数关系式;
(2)当面条的总长度为50m时,面条的粗细为多少?
(3)若当面条的粗细应不小于 ,面条的总长度最长是多少?
22. (8分) 列方程解应用题:(本小题8分)
某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案(1):甲工程队单独完成这项工程,刚好如期完成;
方案(2):乙工程队单独完成这项工程,要比规定日期多5天;
方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;
在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。
23.(10分)已知反比例函数 图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数 的图象上另一点C(n,— ),
(1) 反比例函数的解析式为 ,m= ,n= ;
(2) 求直线y=ax+b的解析式;
(3) 在y轴上是否存在一点P,使△PAO为等腰三角形,若存在,请直接写出P点坐标,若不存在,说明理由。
参考答案
一.1.4.3×10-5 2.4; ; 1; 3.≠5 ; =1 4.m>1;减小 5.-6 6. m<3 7.16 8. 4或 9.5 10.
二.11.B 12.D 13.A 14.C 15.C 16.C
三.17. (1)解:原式= …1分 (2) 解:原式= …..1分
= ……2分 = ……………….2分
= …....3分 = ……………………3分
=-x-y…………………4分 = ………………………4分
18.(6分)解:原式= …………………1分
= …2分 = …3分= …4分
选一个数代入计算…………………….………6分
19.(8分)解方程:
(1)解: …1分(2)解: …1分
两边同时乘以(x-3)得 两边同时乘以(x+2)(x-2)得
1=2(x-3)-x ………..2分 x(x-2)- =8……..2分
解得x=7 ………...…..3分 解得x=-2.....3分
经检验x=7是原方程的解…..4分 经检验 x=-2不是原方程的解,所以原方程无解…..4分
20.解:连接AC,∵AB⊥BC,∴∠B=90°………………1分
∴AC= = =10………………….…2分
∵ ………3分
∴⊿ACD为直角三角形……………………………..………4分
∴四边形ABCD的面积= = =144………6分
21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度 是面条的粗细(横截面积) 的反比例函数,其图像如图所示.
(1) ….…2分
(2)当y=50时, x=2.56∴面条的粗细为2.56 ………….…4分
(3)当x=1.6时, ∴当面条的粗细不小于 ,面条的总长度最长是80m…6分
22.解:在不耽误工期的情况下,我觉得方案(3)最省钱。…………1分
理由:设规定日期为x天,则甲工程队单独完成这项工程需x天,乙工程队单独完成这项工程需(x+5)天,依题意列方程得:
…………4分
解得x=20…………5分
经检验x=20是原方程的解…………6分 x+5=20+5=25
方案(1)所需工程款为:1.5×20=30万元
方案(2)所需工程款为:1.1×25=27.5万元
方案(3)所需工程款为:1.5×4+1.1×20=28万元
∴在不耽误工期的情况下,我觉得方案(3)最省钱…………8分
23.(1) ; m=3; n=4….……3分(2) …………6分
(3)答:存在点P使△PAO为等腰三角形;
点P坐标分别为:
P1(0, ) ; P2(0,6); P3(0, ) ; P4(0, ) ……10分
1. 用科学记数法表示0.000043为 。
2.计算:计算 ; __________;
= ; = 。
3.当x 时,分式 有意义;当x 时,分式 的值为零。
4.反比例函数 的图象在第一、三象限,则 的取值范围是 ;在每一象限内y随x的增大而 。
5. 如果反比例函数 过A(2,-3),则m= 。
6. 设反比例函数y= 的图象上有两点A(x1,y1)和B(x2,y2),且当x1<0<x2时,有y1<y2,则m的取值范围是 .
7.如图由于台风的影响,一棵树在离地面 处折断,树顶落在离树干底部 处,则这棵树在折断前(不包括树根)长度是 m.
8. 三角形的两边长分别为3和5,要使这个三角形是直角三角 A D
形,则第三条边长是 . .
9. 如图若正方形ABCD的边长是4,BE=1,在AC上找一点P E
使PE+PB的值最小,则最小值为 。 B C 10.如图,公路PQ和公路MN交于点P,且∠NPQ=30°,
公路PQ上有一所学校A,AP=160米,若有一拖拉机
沿MN方向以18米∕秒的速度行驶并对学校产生影响,
则造成影响的时间为 秒。
二.单项选择题(每小题3分,共18分)
11.在式子 、 、 、 、 、 中,分式的个数有( )
A、2个 B、3个 C、4个 D、5个
12.下面正确的命题中,其逆命题不成立的是( )
A.同旁内角互补,两直线平行 B.全等三角形的对应边相等
C.角平分线上的点到这个角的两边的距离相等 D.对顶角相等
13.下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )
A . B .
C . D.
14.在同一直角坐标系中,函数y=kx+k与 的图像大致是( )
15.如图所示:数轴上点A所表示的数为a,则a的值是( )
A. +1 B.- +1 C. -1 D.
16.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,则DE的长为( ).
A.3 B.4 C.5 D.6
三、解答题:
17.(8分)计算:
(1) (2)
18.(6分)先化简代数式 ,然后选取一个使原式有意义的 的值代入求值.
19.(8分)解方程:
(1) (2)
20.(6分)已知:如图,四边形ABCD,AB=8,BC=6,CD=26,AD=24,且AB⊥BC。
求:四边形ABCD的面积。
21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度 是面条的粗细(横截面积) 的反比例函数,其图像如图所示.
(1)写出 与 的函数关系式;
(2)当面条的总长度为50m时,面条的粗细为多少?
(3)若当面条的粗细应不小于 ,面条的总长度最长是多少?
22. (8分) 列方程解应用题:(本小题8分)
某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案(1):甲工程队单独完成这项工程,刚好如期完成;
方案(2):乙工程队单独完成这项工程,要比规定日期多5天;
方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;
在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。
23.(10分)已知反比例函数 图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数 的图象上另一点C(n,— ),
(1) 反比例函数的解析式为 ,m= ,n= ;
(2) 求直线y=ax+b的解析式;
(3) 在y轴上是否存在一点P,使△PAO为等腰三角形,若存在,请直接写出P点坐标,若不存在,说明理由。
参考答案
一.1.4.3×10-5 2.4; ; 1; 3.≠5 ; =1 4.m>1;减小 5.-6 6. m<3 7.16 8. 4或 9.5 10.
二.11.B 12.D 13.A 14.C 15.C 16.C
三.17. (1)解:原式= …1分 (2) 解:原式= …..1分
= ……2分 = ……………….2分
= …....3分 = ……………………3分
=-x-y…………………4分 = ………………………4分
18.(6分)解:原式= …………………1分
= …2分 = …3分= …4分
选一个数代入计算…………………….………6分
19.(8分)解方程:
(1)解: …1分(2)解: …1分
两边同时乘以(x-3)得 两边同时乘以(x+2)(x-2)得
1=2(x-3)-x ………..2分 x(x-2)- =8……..2分
解得x=7 ………...…..3分 解得x=-2.....3分
经检验x=7是原方程的解…..4分 经检验 x=-2不是原方程的解,所以原方程无解…..4分
20.解:连接AC,∵AB⊥BC,∴∠B=90°………………1分
∴AC= = =10………………….…2分
∵ ………3分
∴⊿ACD为直角三角形……………………………..………4分
∴四边形ABCD的面积= = =144………6分
21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度 是面条的粗细(横截面积) 的反比例函数,其图像如图所示.
(1) ….…2分
(2)当y=50时, x=2.56∴面条的粗细为2.56 ………….…4分
(3)当x=1.6时, ∴当面条的粗细不小于 ,面条的总长度最长是80m…6分
22.解:在不耽误工期的情况下,我觉得方案(3)最省钱。…………1分
理由:设规定日期为x天,则甲工程队单独完成这项工程需x天,乙工程队单独完成这项工程需(x+5)天,依题意列方程得:
…………4分
解得x=20…………5分
经检验x=20是原方程的解…………6分 x+5=20+5=25
方案(1)所需工程款为:1.5×20=30万元
方案(2)所需工程款为:1.1×25=27.5万元
方案(3)所需工程款为:1.5×4+1.1×20=28万元
∴在不耽误工期的情况下,我觉得方案(3)最省钱…………8分
23.(1) ; m=3; n=4….……3分(2) …………6分
(3)答:存在点P使△PAO为等腰三角形;
点P坐标分别为:
P1(0, ) ; P2(0,6); P3(0, ) ; P4(0, ) ……10分
展开全部
风华学校八年级数学第二学期期中测试题
一、选择题(每小题3分,共30分)
1、代数式中,分式有( )
A、4个 B、3个 C、2个 D、1个
2、对于反比例函数,下列说法不正确的是( )
A、点(-2,-1)在它的图象上。 B、它的图象在第一、三象限。
C、当x>0时,y随x的增大而增大。 D、当x<0时,y随x的增大而减小。
3、若分式的值为0,则x的值是( )
A、-3 B、3 C、±3 D、0
4、以下是分式方程去分母后的结果,其中正确的是( )
A、 B、 C、 D、
5、如图,点A是函数图象上的任意一点,AB⊥x轴于点B,AC⊥y轴于点C,则四边形OBAC的面积为( )
A、2 B、4 C、8 D、无法确定
6、已知反比例函数经过点A(x1,y1)、B(x2,y2),如果y1<y2<0,那么( )
A、x2>x1>0 B、x1>x2>0 C、x2<x1<0 D、x1<x2<0
7、已知下列四组线段:
①5,12,13 ; ②15,8,17 ; ③1.5,2,2.5 ; ④。
其中能构成直角三角形的有( )
A、四组 B、三组 C、二组 D、一组
8、若关于x的方程有增根,则m的值为( )
A、2 B、0 C、-1 D、1
9、下列运算中,错误的是( )
A、 B、
C、 D、
10、如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是( )
A、 B、 C、 D、
二、填空题(每小题3分,共30分)
11、写出一个图象位于第一、三象限的反比例函数的表达式: 。
12、反比例函数的图象经过点A(-3,1),则k的值为 。
13、若分式的值是负数,那么x的取值范围是 。
14、化简: 。
15、若双曲线在第二、四象限,则直线不经过第 象限。
16、如图,已知△ABC中,∠ABC=900,以△ABC的各边为过在△ABC外作
三个正方形,S1、S2、S3分别表示这三个正方形的面积,S1=81,S3=225,
则S2= 。
17、已知反比例函数和一次函数的图象的两个交点分别
是A(-3,-2)、B(1,m),则 。
18、已知△ABC的各边长都是整数,且周长是8,则△ABC的面积为 。
19、将一副角板如图放置,则上、下两块三角板
的面积S1:S2= 。
20、已知,
则分式的值为 。
三、解答题(共40分,写出必要的演算推理过程)
21、(6分)先化简,再求值:
22、(6分)△ABC中,AB=10,BC=12,BC边上的中线AD=8,求AC的长。
23、(7分)在平面直角坐标第XOY中,反比例函数的图象与的图象关于x轴对称,又与直线交于点A(m,3),试确定a的值。
24、(7分)如图,△ABC中,∠ACB=900,AC=7,BC=24,CD⊥AB于D。
(1)求AB的长;
(2)求CD的长。
25、(8分)已知实数m、n满足:求m和n的值。
26、(8分)某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米。此人从A地出发,先步行4千米,然后乘汽车10千米,就到达B地。他又骑自行车从B地返回A地。结果往返所用的时间恰好相同。求此人步行的速度。
27、(8分)如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数的图象经过点A。
(1)求点A的坐标。
(2)如果经过点A的一次函数图象与x轴的正半轴交于点B,且OB=AB,求一次函数的解析式。
参考答案
一、BCADB,CADDB
二、11、答案不唯一;12、-3; 13、1<x<3 ; 14、 ;15、三; 16、144;17、0
18、;19、; 20、8或-1。
三、21、化简得
22、∵AB2=AD2+BD2 ∴ AD⊥DC ∴
23、易知
把A(-1,3)代入是,得
24、(1)
(2)
25、
26、解:设此人步行速度为x千米/时
则
解得x=6
经检验:x=6是原方程的解。
答:略
27、(1)A(2,6)
(2)
一、选择题(每小题3分,共30分)
1、代数式中,分式有( )
A、4个 B、3个 C、2个 D、1个
2、对于反比例函数,下列说法不正确的是( )
A、点(-2,-1)在它的图象上。 B、它的图象在第一、三象限。
C、当x>0时,y随x的增大而增大。 D、当x<0时,y随x的增大而减小。
3、若分式的值为0,则x的值是( )
A、-3 B、3 C、±3 D、0
4、以下是分式方程去分母后的结果,其中正确的是( )
A、 B、 C、 D、
5、如图,点A是函数图象上的任意一点,AB⊥x轴于点B,AC⊥y轴于点C,则四边形OBAC的面积为( )
A、2 B、4 C、8 D、无法确定
6、已知反比例函数经过点A(x1,y1)、B(x2,y2),如果y1<y2<0,那么( )
A、x2>x1>0 B、x1>x2>0 C、x2<x1<0 D、x1<x2<0
7、已知下列四组线段:
①5,12,13 ; ②15,8,17 ; ③1.5,2,2.5 ; ④。
其中能构成直角三角形的有( )
A、四组 B、三组 C、二组 D、一组
8、若关于x的方程有增根,则m的值为( )
A、2 B、0 C、-1 D、1
9、下列运算中,错误的是( )
A、 B、
C、 D、
10、如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是( )
A、 B、 C、 D、
二、填空题(每小题3分,共30分)
11、写出一个图象位于第一、三象限的反比例函数的表达式: 。
12、反比例函数的图象经过点A(-3,1),则k的值为 。
13、若分式的值是负数,那么x的取值范围是 。
14、化简: 。
15、若双曲线在第二、四象限,则直线不经过第 象限。
16、如图,已知△ABC中,∠ABC=900,以△ABC的各边为过在△ABC外作
三个正方形,S1、S2、S3分别表示这三个正方形的面积,S1=81,S3=225,
则S2= 。
17、已知反比例函数和一次函数的图象的两个交点分别
是A(-3,-2)、B(1,m),则 。
18、已知△ABC的各边长都是整数,且周长是8,则△ABC的面积为 。
19、将一副角板如图放置,则上、下两块三角板
的面积S1:S2= 。
20、已知,
则分式的值为 。
三、解答题(共40分,写出必要的演算推理过程)
21、(6分)先化简,再求值:
22、(6分)△ABC中,AB=10,BC=12,BC边上的中线AD=8,求AC的长。
23、(7分)在平面直角坐标第XOY中,反比例函数的图象与的图象关于x轴对称,又与直线交于点A(m,3),试确定a的值。
24、(7分)如图,△ABC中,∠ACB=900,AC=7,BC=24,CD⊥AB于D。
(1)求AB的长;
(2)求CD的长。
25、(8分)已知实数m、n满足:求m和n的值。
26、(8分)某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米。此人从A地出发,先步行4千米,然后乘汽车10千米,就到达B地。他又骑自行车从B地返回A地。结果往返所用的时间恰好相同。求此人步行的速度。
27、(8分)如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数的图象经过点A。
(1)求点A的坐标。
(2)如果经过点A的一次函数图象与x轴的正半轴交于点B,且OB=AB,求一次函数的解析式。
参考答案
一、BCADB,CADDB
二、11、答案不唯一;12、-3; 13、1<x<3 ; 14、 ;15、三; 16、144;17、0
18、;19、; 20、8或-1。
三、21、化简得
22、∵AB2=AD2+BD2 ∴ AD⊥DC ∴
23、易知
把A(-1,3)代入是,得
24、(1)
(2)
25、
26、解:设此人步行速度为x千米/时
则
解得x=6
经检验:x=6是原方程的解。
答:略
27、(1)A(2,6)
(2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
“华联”超市准备从上海购进甲、乙两种商品进行销售
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-04-26
展开全部
在网上找
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询