已知 如图 在正方形ABCD中 点E F分别在BC和CD上 AE=AF (1)求证 BE=DF
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM。判断四边形AEMF是什么特殊四边形?并证明你的结论...
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM。判断四边形AEMF是什么特殊四边形?并证明你的结论
展开
6个回答
展开全部
证明:(1)∵正方形ABCD,
∴∠D=∠B=90°,AB=AD=BC=CD,
在Rt△ABE与Rt△ADF中,
∵ AB=AD AE=AF ,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.
(2)四边形AEGF是菱形.
证明:∵△ABE≌△ADF,
∴∠BAE=∠DAF,AE=AF,
又AC平分∠BAD,
∴∠EAC=∠FAC,
又∵AE=AF,
∴AO垂直平分EF(等腰三角形底边的高和中线与顶角的平分线三线重合)
又OG=OA
∴AG、EF互相垂直平分(菱形对角线的特性)
∴四边形AEGF是菱形.
∴∠D=∠B=90°,AB=AD=BC=CD,
在Rt△ABE与Rt△ADF中,
∵ AB=AD AE=AF ,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.
(2)四边形AEGF是菱形.
证明:∵△ABE≌△ADF,
∴∠BAE=∠DAF,AE=AF,
又AC平分∠BAD,
∴∠EAC=∠FAC,
又∵AE=AF,
∴AO垂直平分EF(等腰三角形底边的高和中线与顶角的平分线三线重合)
又OG=OA
∴AG、EF互相垂直平分(菱形对角线的特性)
∴四边形AEGF是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)∵正方形ABCD,
∴∠D=∠B=90°,AB=AD=BC=CD,
在Rt△ABE与Rt△ADF中,
∵AB=ADAE=AF,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.
(2)四边形AEGF是菱形.
证明:∵△ABE≌△ADF,
∴∠BAE=∠DAF,AE=AF
∵四边形ABCD是正方形,
∴AC平分∠BAD,
∴∠EAC=∠FAC,
又∵AE=AF,
∴AO垂直平分EF,
又∵OG=OA,
∴四边形AEGF是平行四边形,
∵AO⊥EF,
∴平行四边形AEGF是菱形.
∴∠D=∠B=90°,AB=AD=BC=CD,
在Rt△ABE与Rt△ADF中,
∵AB=ADAE=AF,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.
(2)四边形AEGF是菱形.
证明:∵△ABE≌△ADF,
∴∠BAE=∠DAF,AE=AF
∵四边形ABCD是正方形,
∴AC平分∠BAD,
∴∠EAC=∠FAC,
又∵AE=AF,
∴AO垂直平分EF,
又∵OG=OA,
∴四边形AEGF是平行四边形,
∵AO⊥EF,
∴平行四边形AEGF是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵AE=AF,
∴Rt△ABE≌Rt△ADF,
∴BE=DF
(2)四边形AEMF是菱形.
∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形邻边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
易得△COE≌△COF,
∴OE=OF,
∵OM=OA,
(对角线互相平分的四边形是平行四边形),
∴四边形AEMF是平行四边形,
∵AE=AF,
∴平行四边形AEMF是菱形.
∴AB=AD,∠B=∠D=90°,
∵AE=AF,
∴Rt△ABE≌Rt△ADF,
∴BE=DF
(2)四边形AEMF是菱形.
∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形邻边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
易得△COE≌△COF,
∴OE=OF,
∵OM=OA,
(对角线互相平分的四边形是平行四边形),
∴四边形AEMF是平行四边形,
∵AE=AF,
∴平行四边形AEMF是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B = ∠D = 90°.
∵AE = AF,∴.
∴BE=DF.
(2)四边形AEMF是菱形.
∵四边形ABCD是正方形,∴∠BCA = ∠DCA = 45°,BC = DC.
∵BE=DF,∴BC-BE = DC-DF. 即.
∴.
∵OM = OA,∴四边形AEMF是平行四边形.
∵AE = AF,
∴平行四边形AEMF是菱形.
∵AE = AF,∴.
∴BE=DF.
(2)四边形AEMF是菱形.
∵四边形ABCD是正方形,∴∠BCA = ∠DCA = 45°,BC = DC.
∵BE=DF,∴BC-BE = DC-DF. 即.
∴.
∵OM = OA,∴四边形AEMF是平行四边形.
∵AE = AF,
∴平行四边形AEMF是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询