展开全部
期中综合测试
(时间:120分钟 总分:120分)
一、选择题(每小题3分,共30分)
1. 在式子 , , , , + ,9 x + , 中,分式的个数是( )
A.5 B.4 C.3 D.2
2. 下列各式,正确的是( )
A. B. C. D. =2
3. 下列关于分式的判断,正确的是( )
A.当x=2时, 的值为零 B.无论x为何值, 的值总为正数
C.无论x为何值, 不可能得整数值 D.当x 3时, 有意义
4. 把分式 中的分子分母的x、y都同时扩大为原来的2倍,那么分式的值将是原分式值的( )
A.2倍 B.4倍 C.一半 D.不变
5. 下列三角形中是直角三角形的是( )
A.三边之比为5∶6∶7 B.三边满足关系a+b=c
C.三边之长为9、40、41 D.其中一边等于另一边的一半
6.如果△ABC的三边分别为 , , ,其中 为大于1的正整数,则( )
A.△ABC是直角三角形,且斜边为 B.△ABC是直角三角形,且斜边为
C.△ABC是直角三角形,且斜边为 D.△ABC不是直角三角形
7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为( )
A. 20 B. 22 C. 24 D. 26
8.已知函数 的图象经过点(2,3),下列说法正确的是( )
A.y随x的增大而增大 B.函数的图象只在第一象限
C.当x<0时,必有y<0 D.点(-2,-3)不在此函数的图象上
9.在函数 (k>0)的图象上有三点A1(x1, y1 )、A2(x2, y2)、A3(x3, y3 ),已知x1<x2<0<x3,则下列各式中,正确的是 ( )
A.y1<y2<y3 B.y3<y2<y1 C. y2< y1<y3 D.y3<y1<y2
10.如图,函数y=k(x+1)与 (k<0)在同一坐标系中,图象只能是下图中的( )
二、填空题(每小题2分,共20分)
11.不改变分式的值,使分子、分母的第一项系数都是正数,则 .
12.化简: =________; =___________.
13.已知 - =5,则 的值是 .
14.正方形的对角线为4,则它的边长AB= .
15.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是______米.
16.一艘帆船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有____________km.
17.如下图,已知OA=OB,那么数轴上点A所表示的数是____________.
18.某食用油生产厂要制造一种容积为5升(1升=1立方分米)的圆柱形油桶,油桶的底面面积s与桶高h的函数关系式为 .
19.如果点(2, )和(- ,a)都在反比例函数 的图象
上,则a= .
20.如图所示,设A为反比例函数 图象上一点,且矩形ABOC
的面积为3,则这个反比例函数解析式为 .
三、解答题(共70分)
21.(每小题4分,共16分)化简下列各式:
(1) + . (2) .
(3) . (4)( - )• ÷( + ).
22.(每小题4分,共8分)解下列方程:
(1) + =3. (2) .
23.(6分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.
24.(6分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米?
25.(6分)如图,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?
26.(8分)某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调. (1)从组装空调开始,每天组装的台数m(单位: 台/天)与生产的时间t(单位:
天)之间有怎样的函数关系?
(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?
27.(10分)如图,正方形OABC的面积为9,点O为坐标原点,点B在函数 (k>0,x>0)的图象上,点P(m、n)是函数 (k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.
(1)求B点坐标和k的值;(2)当S=92 时,求点P的坐标;(3)写出S关于m的函数关系式.
28.(10分)如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离分别为2km和7km,且张、李二村庄相距13km.
(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;
(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?
期中综合测试
1.B 2.A 3.B 4.C 5.C 6.C 7.C 8.C 9.C 10.B 11. 12. , 13.1 14. 15.12 16.200 17. 18. 19.-2 20. 21.(1) ;(2) ;(3) ;(4) 22.(1) ;(2) 不是原方程的根,原方程无解 23.蜗牛神的速度是每小时6米,蚂蚁王的速度是每小时24米 24.1200米 25.先用勾股定理求出AC=2米,CE=1.5米,所以AE=0.5米 26.(1)m = 9000t ;(2)180 27.(1)B(3,3),k=9;(2)(32 ,6),(6,32 );(3)S = 9- 27m 或S = 9-3m 28.(1)作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,PA+PB的长度之和最短,即所铺设水管最短;(2)过B点作l的垂线,过A′作l的平行线,设这两线交于点C,则∠C=90°.又过A作AE⊥BC于E,依题意BE=5,AB=13,∴ AE2=AB2-BE2=132-52=144.∴ AE=12.由平移关系,A′C=AE=12,Rt△B A′C中,∵ BC=7+2=9,A′C=12,∴ A′B′=A′C2+BC2=92+122=225 , ∴ A′B=15.∵ PA=PA′,∴ PA+PB=A′B=15.∴ 1500×15=22500(元)
(时间:120分钟 总分:120分)
一、选择题(每小题3分,共30分)
1. 在式子 , , , , + ,9 x + , 中,分式的个数是( )
A.5 B.4 C.3 D.2
2. 下列各式,正确的是( )
A. B. C. D. =2
3. 下列关于分式的判断,正确的是( )
A.当x=2时, 的值为零 B.无论x为何值, 的值总为正数
C.无论x为何值, 不可能得整数值 D.当x 3时, 有意义
4. 把分式 中的分子分母的x、y都同时扩大为原来的2倍,那么分式的值将是原分式值的( )
A.2倍 B.4倍 C.一半 D.不变
5. 下列三角形中是直角三角形的是( )
A.三边之比为5∶6∶7 B.三边满足关系a+b=c
C.三边之长为9、40、41 D.其中一边等于另一边的一半
6.如果△ABC的三边分别为 , , ,其中 为大于1的正整数,则( )
A.△ABC是直角三角形,且斜边为 B.△ABC是直角三角形,且斜边为
C.△ABC是直角三角形,且斜边为 D.△ABC不是直角三角形
7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为( )
A. 20 B. 22 C. 24 D. 26
8.已知函数 的图象经过点(2,3),下列说法正确的是( )
A.y随x的增大而增大 B.函数的图象只在第一象限
C.当x<0时,必有y<0 D.点(-2,-3)不在此函数的图象上
9.在函数 (k>0)的图象上有三点A1(x1, y1 )、A2(x2, y2)、A3(x3, y3 ),已知x1<x2<0<x3,则下列各式中,正确的是 ( )
A.y1<y2<y3 B.y3<y2<y1 C. y2< y1<y3 D.y3<y1<y2
10.如图,函数y=k(x+1)与 (k<0)在同一坐标系中,图象只能是下图中的( )
二、填空题(每小题2分,共20分)
11.不改变分式的值,使分子、分母的第一项系数都是正数,则 .
12.化简: =________; =___________.
13.已知 - =5,则 的值是 .
14.正方形的对角线为4,则它的边长AB= .
15.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是______米.
16.一艘帆船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有____________km.
17.如下图,已知OA=OB,那么数轴上点A所表示的数是____________.
18.某食用油生产厂要制造一种容积为5升(1升=1立方分米)的圆柱形油桶,油桶的底面面积s与桶高h的函数关系式为 .
19.如果点(2, )和(- ,a)都在反比例函数 的图象
上,则a= .
20.如图所示,设A为反比例函数 图象上一点,且矩形ABOC
的面积为3,则这个反比例函数解析式为 .
三、解答题(共70分)
21.(每小题4分,共16分)化简下列各式:
(1) + . (2) .
(3) . (4)( - )• ÷( + ).
22.(每小题4分,共8分)解下列方程:
(1) + =3. (2) .
23.(6分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.
24.(6分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米?
25.(6分)如图,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?
26.(8分)某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调. (1)从组装空调开始,每天组装的台数m(单位: 台/天)与生产的时间t(单位:
天)之间有怎样的函数关系?
(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?
27.(10分)如图,正方形OABC的面积为9,点O为坐标原点,点B在函数 (k>0,x>0)的图象上,点P(m、n)是函数 (k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.
(1)求B点坐标和k的值;(2)当S=92 时,求点P的坐标;(3)写出S关于m的函数关系式.
28.(10分)如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离分别为2km和7km,且张、李二村庄相距13km.
(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;
(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?
期中综合测试
1.B 2.A 3.B 4.C 5.C 6.C 7.C 8.C 9.C 10.B 11. 12. , 13.1 14. 15.12 16.200 17. 18. 19.-2 20. 21.(1) ;(2) ;(3) ;(4) 22.(1) ;(2) 不是原方程的根,原方程无解 23.蜗牛神的速度是每小时6米,蚂蚁王的速度是每小时24米 24.1200米 25.先用勾股定理求出AC=2米,CE=1.5米,所以AE=0.5米 26.(1)m = 9000t ;(2)180 27.(1)B(3,3),k=9;(2)(32 ,6),(6,32 );(3)S = 9- 27m 或S = 9-3m 28.(1)作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,PA+PB的长度之和最短,即所铺设水管最短;(2)过B点作l的垂线,过A′作l的平行线,设这两线交于点C,则∠C=90°.又过A作AE⊥BC于E,依题意BE=5,AB=13,∴ AE2=AB2-BE2=132-52=144.∴ AE=12.由平移关系,A′C=AE=12,Rt△B A′C中,∵ BC=7+2=9,A′C=12,∴ A′B′=A′C2+BC2=92+122=225 , ∴ A′B=15.∵ PA=PA′,∴ PA+PB=A′B=15.∴ 1500×15=22500(元)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询