为什么指数函数和对数函数的底数要大于0

小圆帽聊汽车
高粉答主

2019-08-09 · 致力于汽车领域知识的解答
小圆帽聊汽车
采纳数:796 获赞数:270542

向TA提问 私信TA
展开全部

指数函数y=a^x中

当a=0时,若x>0,则无论x取何值,a^x恒等于0;若x<0,则a^x无意义。

当a<0时,如y=(-2)^x,对x取任何值,在实数范围内函数不存在。

当a=1时,y=1^x=1,是一常量,无研究价值。

纵上可知,当a小于等于0,或a=1时,不是没有意义,就是没有研究的必要。

在对数函数中

当a<0时,则N为某些值时,b不存在,如log(-2)^1\2。

当a=0,N不为0时,b不存在,如log0^3,N为0时,b可以是任意正数,但是不唯一.即log0^0有无数个值。

当a=1,N不为1时,b不存在。

当N=1,b可以为任意实数,是不唯一的,即log1^1有无数个值。

综上,就规定了a>0且a不等于1。

扩展资料:

简介

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。

梦色十年
高粉答主

2019-07-06 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:97.5万
展开全部

在指数函数y=a^x中

当a=0时,若x>0,则无论x取何值,a^x恒等于0;若x<0,则a^x无意义。

当a<0时,如y=(-2)^x,对x取任何值,在实数范围内函数不存在。

当a=1时,y=1^x=1,是一常量,无研究价值。

纵上可知,当a小于等于0,或a=1时,不是没有意义,就是没有研究的必要。

在对数函数中

当a<0时,则N为某些值时,b不存在,如log(-2)^1\2。

当a=0,N不为0时,b不存在,如log0^3,N为0时,b可以是任意正数,但是不唯一.即log0^0有无数个值。

当a=1,N不为1时,b不存在。

当N=1,b可以为任意实数,是不唯一的,即log1^1有无数个值。

综上,就规定了a>0且a不等于1。

扩展资料:

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】 

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阿良Allen
推荐于2016-12-01 · TA获得超过171个赞
知道答主
回答量:38
采纳率:0%
帮助的人:16.2万
展开全部
在指数函数y=a^x中
当a=0时,若x>0,则无论x取何值,a^x恒等于0;若x<0,则a^x无意义.
当a<0时,如y=(-2)^x,对x取任何值,在实数范围内函数不存在.
当a=1时,y=1^x=1,是一常量,无研究价值.
纵上可知,当a小于等于0,或a=1时,不是没有意义,就是没有研究的必要.
在对数函数中,
当a<0时,则N为某些值时,b不存在,如log(-2)^1\2;
当a=0,N不为0时,b不存在,如log0^3,N为0时,b可以是任意正数,但是不唯一.即log0^0有无数个值.
当a=1,N不为1时,b不存在.
当N=1,b可以为任意实数,是不唯一的,即log1^1有无数个值.
综上,就规定了a>0且a不等于1.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式