一道初三数学题(貌似有点难),求高手来帮我

如图,正方形ABCD的边长为4,点E是AB边上的一点,将△BCE沿着CE折叠至△FCE,若CF、CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为——。答... 如图,正方形ABCD的边长为4,点E是AB边上的一点,将△BCE沿着CE折叠至△FCE,若CF、CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为——。
答案是三分之八根号三,那么这样∠CEB为60°,怎么证它呢?
上图
展开
陶永清
2011-04-29 · TA获得超过10.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:66%
帮助的人:8107万
展开全部
解:因为圆和正方形是轴对称图形,
所以∠DCF=∠BCE,
又△BCE沿着CE折叠至△FCE,
所以∠BCE=∠ECF,
所以∠BCE=∠ECF=∠BCE=∠BCD/3=30°
所以∠CEB为60°
在直角三角形BCE中,由勾股定理,设BE=x,则CE=2x,得,
CE^2=BC^2+BE^2
4x^2=x^2+4^2
解得,CE=(4/3)√3
所以CE=2x=(8/3)√3
sndc_npy
2011-04-29 · TA获得超过6334个赞
知道大有可为答主
回答量:1270
采纳率:0%
帮助的人:1505万
展开全部
要证∠CEB=60°很简单,也就是证∠CBE=30°
解:由折叠的轴对称性可知
∠FCE=∠ECB
又∵CF、CE恰好与⊙O相切
∴CO为∠ECF平分线(切线长定理)
∵O为正方形中心
∴∠OCB=45°,且直线CO经过点A
即∠OCE+∠ECB=3/2∠ECB=45°
得∠ECB=30°
∴CE=4/cos30°=8√3/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
不味黑此0P
2011-04-29
知道答主
回答量:7
采纳率:0%
帮助的人:0
展开全部
连接OC,并将CF上的切点记为G,CE上的切点记为H,连接OG,OH。因为OG=OH,
∠CGO=∠CHO=90°,CO=CO,故△CGO≌△CHO,所以∠GCO=∠HCO,而
∠GCO+∠HCO=∠ECB,所以有∠HCO=1/2∠ECB。又O是正方形的中心,则∠OCB=45°,
故有∠HCO+∠ECB=3/2∠ECB=∠OCB=45°,所以∠ECB=30°,而∠CEB+∠ECB=90°,所以∠CEB为60°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式