统计学中F值和P值的问题
表1中雄性果蝇各浓度组与对照组比较的F值为24.4824; 雌性果蝇各浓度组与对照组比较的F值为14.8346.
表中的F值是怎么算出来的的?还有P值是怎么得出来的,我知道**和*分别表示与对照组相比,统计学有极显著(p<0.01)、显著差异(p<0.05),可是怎么能得出p是小于0.01还是0.05的?希望能给出详细解释,是用Excel还是Spss统计软件呢? 展开
解答如下:
F值表示在某一杀菌条件下的总的杀菌效果,通常是把不同温度下的杀菌时间折算成120℃的杀菌时间,即相当120℃的杀菌时间。应特别注意的是,它不是指工人实际操作所花的时间,它是一个理论上折算过的时间。
P值是衡量控制组与实验组差异大小的指标,*意思是P值小于.05,表示两组存在显著差异,**意思是P值小于.01,表示两组的差异极其显著。
这个可以用SPSS统计,根据你的描述自变量应该是果蝇的性别(雌还是雄),因变量应该是寿命,自变量是名义变量,因变量是连续变量,所以用单因素方差分析就可以得出结果了。
另外,在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来。
R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。
也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。
这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)
Fisher的具体做法是:
假定某一参数的取值。
选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。
从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。
如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值。
如果P值>0.05,说明结果更倾向于接受假定的参数取值。
可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。
但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。
因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。
F值怎么算呢?用软件的话如何选中数据?
你把数据输进SPSS后,在分析菜单下找单因素方差分析,然后将雌雄性那排名义数据点进自变量里,将寿命点进因变量里,直接点OK就行了,结果报告单中会有F和P值的