5个回答
展开全部
要排顺序的就是排列,不用排顺序的就是组合
全排列就是所有的数都要排顺序,除掉一些是因为哪些是个别要特殊对待。
经典题型:(弄懂就差不多会了)
1.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?
.解:出牌的方法可分为以下几类:
(1)5张牌全部分开出,有A 种方法;
(2)2张2一起出,3张A一起出,有A 种方法;
(3)2张2一起出,3张A一起出,有A 种方法;
(4)2张2一起出,3张A分两次出,有C A 种方法;
(5)2张2分开出,3张A一起出,有A 种方法;
(6)2张2分开出,3张A分两次出,有C A 种方法.
因此,共有不同的出牌方法A +A +A +A A +A +C A =860种.
2.二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?
解:由图形特征分析,a>0,开口向上,坐标原点在内部 f(0)=c<0;a<0,开口向下,原点在内部 f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部 af(0)=ac<0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有C C A A =144条.
3.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边位置.
(2)全体排成一行,其中甲不在最左边,乙不在最右边.
(3)全体排成一行,其中男生必须排在一起.
(4)全体排成一行,男、女各不相邻.
(5)全体排成一行,男生不能排在一起.
(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
(7)排成前后二排,前排3人,后排4人.
(8)全体排成一行,甲、乙两人中间必须有3人.
解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A 种,其余6人全排列,有A 种.由乘法原理得A A =2160种.
(2)位置分析法.先排最右边,除去甲外,有A 种,余下的6个位置全排有A 种,但应剔除乙在最右边的排法数A A 种.则符合条件的排法共有A A -A A =3720种.
(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有A A =720种.
(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有A A =144种.
(5)插空法.先排女生,然后在空位中插入男生,共有A A =1440种.
(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A =N×A ,∴N= = 840种.�
(7)与无任何限制的排列相同,有A =5040种.
(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A 种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A A .最后再把选出的3人的排列插入到甲、乙之间即可.共有A ×A ×A =720种.
4.20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.
解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C 种;若恰有一个小盒插入最左侧空档,有 种;若没有小盒插入最左侧空档,有C 种.由加法原理,有N= =120种排列方案,即有120种放法.
5.甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?
解:每人随意值两天,共有C C C 个;甲必值周一,有C C C 个;乙必值周六,有C C C 个;甲必值周一且乙必值周六,有C C C 个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=C C C -2C C C + C C C =90-2×5×6+12=42个.
6.从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条(用数值表示).
解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A =30.
7.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________.
解析:2n个等分点可作出n条直径,从中任选一条直径共有C 种方法;再从以下的(2n-2)个等分点中任选一个点,共有C 种方法,根据乘法原理:直角三角形的个数为:C •C =2n(n-1)个.
全排列就是所有的数都要排顺序,除掉一些是因为哪些是个别要特殊对待。
经典题型:(弄懂就差不多会了)
1.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?
.解:出牌的方法可分为以下几类:
(1)5张牌全部分开出,有A 种方法;
(2)2张2一起出,3张A一起出,有A 种方法;
(3)2张2一起出,3张A一起出,有A 种方法;
(4)2张2一起出,3张A分两次出,有C A 种方法;
(5)2张2分开出,3张A一起出,有A 种方法;
(6)2张2分开出,3张A分两次出,有C A 种方法.
因此,共有不同的出牌方法A +A +A +A A +A +C A =860种.
2.二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?
解:由图形特征分析,a>0,开口向上,坐标原点在内部 f(0)=c<0;a<0,开口向下,原点在内部 f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部 af(0)=ac<0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有C C A A =144条.
3.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边位置.
(2)全体排成一行,其中甲不在最左边,乙不在最右边.
(3)全体排成一行,其中男生必须排在一起.
(4)全体排成一行,男、女各不相邻.
(5)全体排成一行,男生不能排在一起.
(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
(7)排成前后二排,前排3人,后排4人.
(8)全体排成一行,甲、乙两人中间必须有3人.
解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A 种,其余6人全排列,有A 种.由乘法原理得A A =2160种.
(2)位置分析法.先排最右边,除去甲外,有A 种,余下的6个位置全排有A 种,但应剔除乙在最右边的排法数A A 种.则符合条件的排法共有A A -A A =3720种.
(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有A A =720种.
(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有A A =144种.
(5)插空法.先排女生,然后在空位中插入男生,共有A A =1440种.
(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A =N×A ,∴N= = 840种.�
(7)与无任何限制的排列相同,有A =5040种.
(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A 种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A A .最后再把选出的3人的排列插入到甲、乙之间即可.共有A ×A ×A =720种.
4.20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.
解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C 种;若恰有一个小盒插入最左侧空档,有 种;若没有小盒插入最左侧空档,有C 种.由加法原理,有N= =120种排列方案,即有120种放法.
5.甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?
解:每人随意值两天,共有C C C 个;甲必值周一,有C C C 个;乙必值周六,有C C C 个;甲必值周一且乙必值周六,有C C C 个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=C C C -2C C C + C C C =90-2×5×6+12=42个.
6.从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条(用数值表示).
解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A =30.
7.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________.
解析:2n个等分点可作出n条直径,从中任选一条直径共有C 种方法;再从以下的(2n-2)个等分点中任选一个点,共有C 种方法,根据乘法原理:直角三角形的个数为:C •C =2n(n-1)个.
展开全部
全排列就是N个不同东西排成一排的排法,排法的总数为N的阶乘。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
要排顺序的就是排列,不用排顺序的就是组合
全排列就是所有的数都要排顺序,除掉一些是因为哪些是个别要特殊对待
全排列就是所有的数都要排顺序,除掉一些是因为哪些是个别要特殊对待
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
其实排列组合的规律性是很强的,出题基本上就那几个类型,关键是在平时的练习中要善于总结。有些看上去不一样的题目其实质是一样的。全排列就是所有的排列方式的总和,它除掉一些数的原因是要考虑顺序,你们书上应该都有的。祝学习进步~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
将A
B
C
D四名学生分到三个不同的班,每班至少分到一名同学,说明有一个班分到两人
考虑这分到一个班的两人的组合,可能种数:4*3/2-1=5
(-1是去掉A
B两同学分到同一班的情况)
这时,就出现了3组学生:两组是1人一组,一组是2人
只需要一个全排列即可:
3*2*1=6
总情况:5*6=30种
B
C
D四名学生分到三个不同的班,每班至少分到一名同学,说明有一个班分到两人
考虑这分到一个班的两人的组合,可能种数:4*3/2-1=5
(-1是去掉A
B两同学分到同一班的情况)
这时,就出现了3组学生:两组是1人一组,一组是2人
只需要一个全排列即可:
3*2*1=6
总情况:5*6=30种
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询