如图是某市部分街道示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路
3个回答
展开全部
解: 甲·乙两人是同时到达F点的,理由如下:
在△DEF和△DCF中,
EF=FC(由点F是EC的中点知)
因为∠BCF=90 °(由EC ⊥BC知)
∠AFC=∠BCF=90 °(由AE//BC知)
∠AFE=180°- ∠AFC=180°- 90 °=90 °(由平角知)
所以∠AFE=90 °=∠AFC
DF=DF(由公共边知)
所以△DEF≌△DCF(SAS)
所以DE=DC(有全等三角形的对应边相等知)
又因为BA//DE,BD//AE
所以四边形ABDE是平行四边形(由两组对边分别平行的四边形为平行四边形知)
所以AE=BD,AB=DE(平行四边形的对边相等)
所以AB+AE+EF=BD+DC+FC(由上知)
所以甲·乙两人是同时到达F点的。
希望对你有用
在△DEF和△DCF中,
EF=FC(由点F是EC的中点知)
因为∠BCF=90 °(由EC ⊥BC知)
∠AFC=∠BCF=90 °(由AE//BC知)
∠AFE=180°- ∠AFC=180°- 90 °=90 °(由平角知)
所以∠AFE=90 °=∠AFC
DF=DF(由公共边知)
所以△DEF≌△DCF(SAS)
所以DE=DC(有全等三角形的对应边相等知)
又因为BA//DE,BD//AE
所以四边形ABDE是平行四边形(由两组对边分别平行的四边形为平行四边形知)
所以AE=BD,AB=DE(平行四边形的对边相等)
所以AB+AE+EF=BD+DC+FC(由上知)
所以甲·乙两人是同时到达F点的。
希望对你有用
展开全部
解: 甲·乙两人是同时到达F点的,理由如下:
在△DEF和△DCF中,
EF=FC(由点F是EC的中点知)
因为∠BCF=90 °(由EC ⊥BC知)
∠AFC=∠BCF=90 °(由AE//BC知)
∠AFE=180°- ∠AFC=180°- 90 °=90 °(由平角知)
所以∠AFE=90 °=∠AFC
DF=DF(由公共边知)
所以△DEF≌△DCF(SAS)
所以DE=DC(有全等三角形的对应边相等知)
又因为BA//DE,BD//AE
所以四边形ABDE是平行四边形(由两组对边分别平行的四边形为平行四边形知)
所以AE=BD,AB=DE(平行四边形的对边相等)
所以AB+AE+EF=BD+DC+FC(由上知)
所以甲·乙两人是同时到达F点的。
在△DEF和△DCF中,
EF=FC(由点F是EC的中点知)
因为∠BCF=90 °(由EC ⊥BC知)
∠AFC=∠BCF=90 °(由AE//BC知)
∠AFE=180°- ∠AFC=180°- 90 °=90 °(由平角知)
所以∠AFE=90 °=∠AFC
DF=DF(由公共边知)
所以△DEF≌△DCF(SAS)
所以DE=DC(有全等三角形的对应边相等知)
又因为BA//DE,BD//AE
所以四边形ABDE是平行四边形(由两组对边分别平行的四边形为平行四边形知)
所以AE=BD,AB=DE(平行四边形的对边相等)
所以AB+AE+EF=BD+DC+FC(由上知)
所以甲·乙两人是同时到达F点的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题不全呀
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询