已知 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6,则1^2+3^2+...+(2n+1)^2=??
1个回答
展开全部
2^2+4^2+...+(2n)^2
=2^2(1^2+2^2+..+n^2)
= 4n(n+1)(2n+1)/6
1^2+2^2+...+(2n+1)^2 = (2n+1)(2n+2)(2n+3)/6
1^2+3^2+...+(2n+1)^2
= 1^2+2^2+...+(2n+1)^2 - ( 2^2+4^2+...+(2n)^2 )
=(2n+1)(2n+2)(2n+3)/6 - 4n(n+1)(2n+1)/6
=[(n+1)(2n+1)/3 ] ( (2n+3) - 2n )
= (n+1)(2n+1)
=2^2(1^2+2^2+..+n^2)
= 4n(n+1)(2n+1)/6
1^2+2^2+...+(2n+1)^2 = (2n+1)(2n+2)(2n+3)/6
1^2+3^2+...+(2n+1)^2
= 1^2+2^2+...+(2n+1)^2 - ( 2^2+4^2+...+(2n)^2 )
=(2n+1)(2n+2)(2n+3)/6 - 4n(n+1)(2n+1)/6
=[(n+1)(2n+1)/3 ] ( (2n+3) - 2n )
= (n+1)(2n+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询