已知等比数列bn与数列an满足bn=3^an nεN+ (1)判断an是何种数列,并给出证明 (2)若a8+a13=m,求b1b2…b20

宇文仙
2011-04-30 · 知道合伙人教育行家
宇文仙
知道合伙人教育行家
采纳数:20989 获赞数:115026
一个数学爱好者。

向TA提问 私信TA
展开全部
(1)
{an}是等差数列
证明:因为数列{bn}是等比数列
所以q=b(n+1)/bn=[3^a(n+1)]/(3^an)=3^[a(n+1)-an]是常数
那么a(n+1)-an是常数
即说明数列{an}是等差数列
(2)
因为a8+a13=m
所以b8*b13=(3^a8)*(3^a13)=3^(a8+a13)=3^m
由等比数列的性质有b1*b20=b2*b19=...=b10*b11=b8*b13=3^m
所以b1*b2*…*b20=(b1*b20)*(b2*b19)*...*(b10*b11)=(3^m)*(3^m)*...*(3^m)=3^(m+m+...+m)=3^(10m)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式