如图,AD平行于EF,点B、C在AD上,∠1=∠2,BF=BC。求证:四边形BCEF是菱形.2若AB=BC=CD,求证:三角形ACF全等
8个回答
展开全部
分析:(1)根据∠1=∠2,AD‖FE,可得∠1=∠FEB,则BF=EF;又BF=BC,所以EF=BC.根据有一组邻边相等的平行四边形是菱形得证;
(2)根据已知条件易得四边形ABEF、CDEF都是平行四边形,所以对边相等.运用SSS判定:△ACF≌△BDE.
解答:证明:(1)∵AD‖FE,
∴∠FEB=∠2.
∵∠1=∠2,
∴∠FEB=∠1.
∴BF=EF.
∵BF=BC,
∴BC=EF.
∴四边形BCEF是平行四边形.
∵BF=BC,
∴四边形BCEF是菱形.
(2)∵EF=BC,AB=BC=CD,AD‖EF,
∴四边形ABEF、CDEF均为平行四边形.
∴AF=BE,FC=ED.
又∵AC=2BC=BD,
∴△ACF≌△BDE.
点评:此题考查了菱形的判定方法及三角形全等的判定等知识点.
菱形的判别方法是:①定义;②四边相等;③对角线互相垂直平分.
具体选择哪种方法需要根据已知条件来确定.
(2)根据已知条件易得四边形ABEF、CDEF都是平行四边形,所以对边相等.运用SSS判定:△ACF≌△BDE.
解答:证明:(1)∵AD‖FE,
∴∠FEB=∠2.
∵∠1=∠2,
∴∠FEB=∠1.
∴BF=EF.
∵BF=BC,
∴BC=EF.
∴四边形BCEF是平行四边形.
∵BF=BC,
∴四边形BCEF是菱形.
(2)∵EF=BC,AB=BC=CD,AD‖EF,
∴四边形ABEF、CDEF均为平行四边形.
∴AF=BE,FC=ED.
又∵AC=2BC=BD,
∴△ACF≌△BDE.
点评:此题考查了菱形的判定方法及三角形全等的判定等知识点.
菱形的判别方法是:①定义;②四边相等;③对角线互相垂直平分.
具体选择哪种方法需要根据已知条件来确定.
展开全部
解答:证明:(1)∵AD‖FE,
∴∠FEB=∠2.
∵∠1=∠2,
∴∠FEB=∠1.
∴BF=EF.
∵BF=BC,
∴BC=EF.
∴四边形BCEF是平行四边形.
∵BF=BC,
∴四边形BCEF是菱形.
(2)∵EF=BC,AB=BC=CD,AD‖EF,
∴四边形ABEF、CDEF均为平行四边形.
∴AF=BE,FC=ED.
又∵AC=2BC=BD,
∴△ACF≌△BDE.
∴∠FEB=∠2.
∵∠1=∠2,
∴∠FEB=∠1.
∴BF=EF.
∵BF=BC,
∴BC=EF.
∴四边形BCEF是平行四边形.
∵BF=BC,
∴四边形BCEF是菱形.
(2)∵EF=BC,AB=BC=CD,AD‖EF,
∴四边形ABEF、CDEF均为平行四边形.
∴AF=BE,FC=ED.
又∵AC=2BC=BD,
∴△ACF≌△BDE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)∵AD∥FE,
∴∠FEB=∠2.
∵∠1=∠2,
∴∠FEB=∠1.
∴BF=EF.
∵BF=BC,
∴BC=EF.
∴四边形BCEF是平行四边形.
∵BF=BC,
∴四边形BCEF是菱形.
(2)∵EF=BC,AB=BC=CD,AD∥EF,
∴四边形ABEF、CDEF均为平行四边形.
∴AF=BE,FC=ED.
又∵AC=2BC=BD,
∴△ACF≌△BDE.
∴∠FEB=∠2.
∵∠1=∠2,
∴∠FEB=∠1.
∴BF=EF.
∵BF=BC,
∴BC=EF.
∴四边形BCEF是平行四边形.
∵BF=BC,
∴四边形BCEF是菱形.
(2)∵EF=BC,AB=BC=CD,AD∥EF,
∴四边形ABEF、CDEF均为平行四边形.
∴AF=BE,FC=ED.
又∵AC=2BC=BD,
∴△ACF≌△BDE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
参考答案上是;763382152 这样写的,肯定对,放心写吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
妩媚艺玮的伤,,你还多搞笑滴(*^__^*)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询