初中物理中考压轴题及解析
4个回答
展开全部
例1、边长1dm的正方形铝块,浸没在水中,它的上表面离水面20cm,求铝块受的浮力?(ρ铝=2.7×103kg/m3)
解法一:上表面受到水的压强:
P上=ρ水gh上=1.0×103kg/m3×9.8N/kg×0.2m=1.96×103Pa
上表面受到水的压力
F向下=P上?S=1.96×103Pa×0.01m2=19.6N
下表面受到水的压强
P下=ρ水gh下=1.0×103kg/m3×9.8N/kg×0.3m=2.94×103Pa
下表面受到水的压力
F向上=P下?S=2.94×103Pa×0.01m2=29.4N
铝块所受浮力
F浮=F向上-F向下=29.4N-19.6N=9.8N
解法二:V排=V物=(0.1m)3=10-3m3
F浮=ρ水gV排=1.0×103kg/m3×9.8N/kg×10-3m3=9.8N
答案:铝块所受浮力是9.8N。
说明:
(1)解法一适用于规则物体,解法二说明浮力大小只与ρ液、V排有关,与物体密度和深度无关。
(2)题中铝块密度是多余条件,用以检验对阿基米德原理的理解。
若误将ρ铝、代入公式,求出的将是物体重力。
在用公式求浮力时,要在字母右下方加上脚标。
例2、容积为1000m3的氢气球,吊篮和球壳的质量为150kg,在空气密度1.29kg/m3的条件下,这气球能载多少吨的物体停留在空中?现在需要载900kg的物体而保持平衡,应放掉多少立方米的氢气?(氢气密度为0.09kg/m3).
解析:由阿基米德原理可知,气球受到的浮力为:
F浮=ρgV=1.29kg/m3×9.8N/kg×103m3=1.264×104N
分析它们的受力,气球能载的物重应是浮力与它自身重量之差:
即在空中能载的物重为:G1=F浮-G=1.264×104N-150×9.8N=11.17×103N
它的质量为:
它现在多载的物体的质量为:△m=1140kg-900kg=240kg
即:△F=240×9.8N=2352N
这一个力也是由气球产生的浮力,如果放掉了一部分的氢气后,体积变小浮力也变小,所以应放掉的氢气体积为:
例3、如图3所示,底面积为80cm2的容器中盛有深30cm的水。将一质量为540g的实心铝球投入水中。问:
(1)铝球浸没在水中时受到的浮力是多大?
(2)投入铝球后,水对容器底部的压强增加了多少?
(3)若用一根最多能承受4N拉力的细绳系住铝球缓慢向上拉,当铝球露出水面的体积为多大时绳子会拉断?(已知ρ铝=2.7×103kg/m3,取g=10N/kg)。
解析:(1)根据阿基米德原理,铝球在水中受到的浮力为F浮=ρ水?g?V排
由题意可知,V排= ,得V排=0.2×10-3m3
所以,F浮=1×103kg/m3×10N/kg×0.2×10-3m3=2N
(2)设投入铝球后水面上升的高度为H,则:
H=V/S=0.2×103m3/80×10-4m2=0.025m
水对容器底部增加的压强是:
P=ρ水?g?H=1×103kg/m-3×10N/kg×0.025m=2.5×102Pa
(3)设当铝球露出水面的体积为V露时,绳子会断,此时的浮力为F浮',则:F浮'=G-F拉
即ρ水?g?V排'= G-F拉
V排'= =1.4×10-4m3
V露=V-V排'=0.2×10-3m3-1.4×10-4m3=0.6×10-4m3
例4、如图4所示的直筒形容器的底面积为100cm2,筒内有用密度不同的材料制成的a、b两实心小球。已知a球的体积为80cm3,是b球体积的3.4倍。两球用细线相连能悬浮在水中。现剪断细线,a球上浮,稳定后水对容器底的压强变化了40Pa。试求:
(1) 细线被剪断前后水面的高度差。
(2) a、b两球的密度。(本题g取近似值10N/kg)
解析:
(1)分析容器底部的压强变化的原因,是因为剪断细线后,a球上浮,由悬浮变为了漂浮,排开水的体积变小,液面下降,由p=ρgh可知应有:Δp=ρgΔh
故液面下降高度为:Δh= =0.004(m)=0.4(cm)
(2)经分析可知a球露出水面的体积应为液体下降的体积,所以,a球漂浮时露出部分的体积V露=ΔhS=0.4×100=40(cm3)
此后球排开水的体积为:V排=Va-V露= Va
应用阿基米德原理,对a来考虑,a球漂浮时有:ρ水gV排=ρagVa,故,ρa= ρ水=0.5×103kg/m3
把a、b看作一个整体来考虑,a、b一起悬浮时有:ρ水g(Va+Vb)=ρagVa+ρbgVb
将Va=3.4Vb代入解得:ρb=4.4ρ水-3.4ρa=2.7×103kg/m3
说明:例3与例4都是浮力与压强结合的题目,解这一类问题时,一定要抓住液体压强的变化,是因为液体中的物体浮力发生了变化,引起液体的深度的变化,才引起了压强的变化。另外 ,例4还有一个整体与局部的关系。
例5、一木块在水中静止时,有13.5cm3的体积露出水面,若将体积为5cm的金属块放在木块上,木块刚好全部浸在水中,求:金属块密度?
解析:这是两个不同状态下的浮力问题,分析步骤是:
(1)确定木块为研究对象,第一个状态是木块漂浮在水面,第二个状态是木块浸没水中,金属块与木块作为整体漂浮在水面。
(2)分析木块受力,画出力的示意图。
(3)根据力的平衡原理列方程求解:
甲图中:F浮=G木…………(1)
乙图中:F浮'=G木+G金…………(2)
(2)式-(1)式得:F浮'- F浮= G金
代入公式后得:ρ水gV木-ρ水g(V木-V露)=ρ金gV金
ρ水V露=ρ金V金
ρ金= ?ρ水= ×1.0×103kg/m3=2.7×103kg/m3
答案:金属块的密度是2.7×103kg/m3。
说明:
(1)涉及两种物理状态下的浮力问题,往往要对两个不同状态下的物体分别进行受力分析,再根据力的平衡原理列出两个方程,并通过解方程求出结果来。
(2)本题的另一种解法是:木块增大的浮力等于金属块重,即ΔF浮=G金,
代入公式:ρ水gΔV排=ρ金gV金
其中ΔV排=13.5cm3,(它等于没有放上金属块时木块露出水面的体积。)代入数据后:1.0g/cm3×13.5cm3=ρ金×5cm3
ρ金=2.7g/cm3=2.7×103kg/m3
变换角度分析问题可以提高思维能力。
*例6、如图,一只盛有水的大瓷碗内放一根粗细和质量都均匀,长度为L的木直尺,搁在碗沿上静止.尺子的1/4浸在水中,1/4在碗沿外.求尺子的密度.
解析:分析尺子的受力情况是受三个力的作用:重力G、浮力F浮、碗边对尺子的支持力N,如图所示,其中支持力N是通过支点的,对转动没有意义。根据杠杆平衡的条件可知:G×OB=F浮×OA……⑴
设尺子的密度为ρ,横载面积为S,则:G=ρgSL……⑵,
由阿基米德原理,它受到的浮力为:F浮=ρ水gS(L/4)……⑶
再由△AOD∽△BOF得: ………⑷
故由⑵⑶⑷联合⑴解得:ρ=5ρ水/8=0.625×103kg/m3
例7、一木块浮于足够高的圆柱形盛水容器中,如图7所示,它浸入水中部分的体积是75cm3,它在水面上的部分是25cm3。(g取10N/kg)求:
(1)木块受到的浮力;
(2)木块的密度;
*(3)若未投入木块时,水对容器底部的压力为F0。试分别表示出木块漂浮时、木块浸没时,水对容器底部的压力F1和F2;
*(4)从未投入木块到漂浮,从漂浮到浸没的三个状态中,水对容器底部第二次增加的压力为木块浸没时水对容器底部压力的n分之一,求n的取值范围。
解析:设木块在水面上的体积为V1,浸入水中体积为V2。
(1)由阿基米德原理:F浮=ρ水gV排
即:F浮=ρ水gV2=103×10×75×10N-6N=0.75N
(2)由二力的平衡:F浮=G木,又因G木=ρ木V木g
所以ρ木= = =0.75×103kg/m3
(3)考虑到容器为圆柱形,木块漂浮时,水对容器底部压力为F1,F1=F0+ρ水gV2
木块浸没时,水对容器底部压力为F2,F2=F0+ρ水g(V1+V2)
(4)水对容器底部第二次增加的压力为F',F'=F2-F1=ρ水gV1
据题意有:
n=
因为,F0>0,则,n>4。
解法一:上表面受到水的压强:
P上=ρ水gh上=1.0×103kg/m3×9.8N/kg×0.2m=1.96×103Pa
上表面受到水的压力
F向下=P上?S=1.96×103Pa×0.01m2=19.6N
下表面受到水的压强
P下=ρ水gh下=1.0×103kg/m3×9.8N/kg×0.3m=2.94×103Pa
下表面受到水的压力
F向上=P下?S=2.94×103Pa×0.01m2=29.4N
铝块所受浮力
F浮=F向上-F向下=29.4N-19.6N=9.8N
解法二:V排=V物=(0.1m)3=10-3m3
F浮=ρ水gV排=1.0×103kg/m3×9.8N/kg×10-3m3=9.8N
答案:铝块所受浮力是9.8N。
说明:
(1)解法一适用于规则物体,解法二说明浮力大小只与ρ液、V排有关,与物体密度和深度无关。
(2)题中铝块密度是多余条件,用以检验对阿基米德原理的理解。
若误将ρ铝、代入公式,求出的将是物体重力。
在用公式求浮力时,要在字母右下方加上脚标。
例2、容积为1000m3的氢气球,吊篮和球壳的质量为150kg,在空气密度1.29kg/m3的条件下,这气球能载多少吨的物体停留在空中?现在需要载900kg的物体而保持平衡,应放掉多少立方米的氢气?(氢气密度为0.09kg/m3).
解析:由阿基米德原理可知,气球受到的浮力为:
F浮=ρgV=1.29kg/m3×9.8N/kg×103m3=1.264×104N
分析它们的受力,气球能载的物重应是浮力与它自身重量之差:
即在空中能载的物重为:G1=F浮-G=1.264×104N-150×9.8N=11.17×103N
它的质量为:
它现在多载的物体的质量为:△m=1140kg-900kg=240kg
即:△F=240×9.8N=2352N
这一个力也是由气球产生的浮力,如果放掉了一部分的氢气后,体积变小浮力也变小,所以应放掉的氢气体积为:
例3、如图3所示,底面积为80cm2的容器中盛有深30cm的水。将一质量为540g的实心铝球投入水中。问:
(1)铝球浸没在水中时受到的浮力是多大?
(2)投入铝球后,水对容器底部的压强增加了多少?
(3)若用一根最多能承受4N拉力的细绳系住铝球缓慢向上拉,当铝球露出水面的体积为多大时绳子会拉断?(已知ρ铝=2.7×103kg/m3,取g=10N/kg)。
解析:(1)根据阿基米德原理,铝球在水中受到的浮力为F浮=ρ水?g?V排
由题意可知,V排= ,得V排=0.2×10-3m3
所以,F浮=1×103kg/m3×10N/kg×0.2×10-3m3=2N
(2)设投入铝球后水面上升的高度为H,则:
H=V/S=0.2×103m3/80×10-4m2=0.025m
水对容器底部增加的压强是:
P=ρ水?g?H=1×103kg/m-3×10N/kg×0.025m=2.5×102Pa
(3)设当铝球露出水面的体积为V露时,绳子会断,此时的浮力为F浮',则:F浮'=G-F拉
即ρ水?g?V排'= G-F拉
V排'= =1.4×10-4m3
V露=V-V排'=0.2×10-3m3-1.4×10-4m3=0.6×10-4m3
例4、如图4所示的直筒形容器的底面积为100cm2,筒内有用密度不同的材料制成的a、b两实心小球。已知a球的体积为80cm3,是b球体积的3.4倍。两球用细线相连能悬浮在水中。现剪断细线,a球上浮,稳定后水对容器底的压强变化了40Pa。试求:
(1) 细线被剪断前后水面的高度差。
(2) a、b两球的密度。(本题g取近似值10N/kg)
解析:
(1)分析容器底部的压强变化的原因,是因为剪断细线后,a球上浮,由悬浮变为了漂浮,排开水的体积变小,液面下降,由p=ρgh可知应有:Δp=ρgΔh
故液面下降高度为:Δh= =0.004(m)=0.4(cm)
(2)经分析可知a球露出水面的体积应为液体下降的体积,所以,a球漂浮时露出部分的体积V露=ΔhS=0.4×100=40(cm3)
此后球排开水的体积为:V排=Va-V露= Va
应用阿基米德原理,对a来考虑,a球漂浮时有:ρ水gV排=ρagVa,故,ρa= ρ水=0.5×103kg/m3
把a、b看作一个整体来考虑,a、b一起悬浮时有:ρ水g(Va+Vb)=ρagVa+ρbgVb
将Va=3.4Vb代入解得:ρb=4.4ρ水-3.4ρa=2.7×103kg/m3
说明:例3与例4都是浮力与压强结合的题目,解这一类问题时,一定要抓住液体压强的变化,是因为液体中的物体浮力发生了变化,引起液体的深度的变化,才引起了压强的变化。另外 ,例4还有一个整体与局部的关系。
例5、一木块在水中静止时,有13.5cm3的体积露出水面,若将体积为5cm的金属块放在木块上,木块刚好全部浸在水中,求:金属块密度?
解析:这是两个不同状态下的浮力问题,分析步骤是:
(1)确定木块为研究对象,第一个状态是木块漂浮在水面,第二个状态是木块浸没水中,金属块与木块作为整体漂浮在水面。
(2)分析木块受力,画出力的示意图。
(3)根据力的平衡原理列方程求解:
甲图中:F浮=G木…………(1)
乙图中:F浮'=G木+G金…………(2)
(2)式-(1)式得:F浮'- F浮= G金
代入公式后得:ρ水gV木-ρ水g(V木-V露)=ρ金gV金
ρ水V露=ρ金V金
ρ金= ?ρ水= ×1.0×103kg/m3=2.7×103kg/m3
答案:金属块的密度是2.7×103kg/m3。
说明:
(1)涉及两种物理状态下的浮力问题,往往要对两个不同状态下的物体分别进行受力分析,再根据力的平衡原理列出两个方程,并通过解方程求出结果来。
(2)本题的另一种解法是:木块增大的浮力等于金属块重,即ΔF浮=G金,
代入公式:ρ水gΔV排=ρ金gV金
其中ΔV排=13.5cm3,(它等于没有放上金属块时木块露出水面的体积。)代入数据后:1.0g/cm3×13.5cm3=ρ金×5cm3
ρ金=2.7g/cm3=2.7×103kg/m3
变换角度分析问题可以提高思维能力。
*例6、如图,一只盛有水的大瓷碗内放一根粗细和质量都均匀,长度为L的木直尺,搁在碗沿上静止.尺子的1/4浸在水中,1/4在碗沿外.求尺子的密度.
解析:分析尺子的受力情况是受三个力的作用:重力G、浮力F浮、碗边对尺子的支持力N,如图所示,其中支持力N是通过支点的,对转动没有意义。根据杠杆平衡的条件可知:G×OB=F浮×OA……⑴
设尺子的密度为ρ,横载面积为S,则:G=ρgSL……⑵,
由阿基米德原理,它受到的浮力为:F浮=ρ水gS(L/4)……⑶
再由△AOD∽△BOF得: ………⑷
故由⑵⑶⑷联合⑴解得:ρ=5ρ水/8=0.625×103kg/m3
例7、一木块浮于足够高的圆柱形盛水容器中,如图7所示,它浸入水中部分的体积是75cm3,它在水面上的部分是25cm3。(g取10N/kg)求:
(1)木块受到的浮力;
(2)木块的密度;
*(3)若未投入木块时,水对容器底部的压力为F0。试分别表示出木块漂浮时、木块浸没时,水对容器底部的压力F1和F2;
*(4)从未投入木块到漂浮,从漂浮到浸没的三个状态中,水对容器底部第二次增加的压力为木块浸没时水对容器底部压力的n分之一,求n的取值范围。
解析:设木块在水面上的体积为V1,浸入水中体积为V2。
(1)由阿基米德原理:F浮=ρ水gV排
即:F浮=ρ水gV2=103×10×75×10N-6N=0.75N
(2)由二力的平衡:F浮=G木,又因G木=ρ木V木g
所以ρ木= = =0.75×103kg/m3
(3)考虑到容器为圆柱形,木块漂浮时,水对容器底部压力为F1,F1=F0+ρ水gV2
木块浸没时,水对容器底部压力为F2,F2=F0+ρ水g(V1+V2)
(4)水对容器底部第二次增加的压力为F',F'=F2-F1=ρ水gV1
据题意有:
n=
因为,F0>0,则,n>4。
展开全部
五年中考三年模拟的书上有啊,而且分析的很好啊!
参考资料: 五年中考三年模拟
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-05-01 · 知道合伙人教育行家
关注
展开全部
到我的网站上找找看,如果有你需要的,我就很开心。百度不让发网址。那么你从我的百度空间里有我的网站网址。Flash在线实验及奥赛题还算比较全的。但在线视频课堂暂时还很少。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
记得有这本书卖……
去买本看看好了
去买本看看好了
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询