如图,在正方形ABCD中,点E、F分别是边AB、AD的中点,DE与CF相交于G,DE、CB的延长线相交于点H,点M是CG的中点
展开全部
(1)∵E为AB中点
∴AE=BE
∵ABCD为正方形
∴∠A=∠ABH=Rt∠
∵∠AED=∠BEH
∴△ADE≌△BEH
∴AD=BH
∵AD=BC
∴BH=BC
且M为CG中点
∴MB为△MCH中位线
∴BM‖GH
(2)∵E,F为中点
且AD=AB
∴EB=FD
∵HB=DC
且∠EBH=∠FDC=Rt∠
∴△EBH≌△FDC
∵∠EHB+∠HEB=90°
∴∠DCF+∠DFC=90°
∵∠MBC=∠EHB
且∠DCH=90°
∴∠MCB+∠MBC=90°
∴∠BMC=90°
∴BM⊥CF
∴AE=BE
∵ABCD为正方形
∴∠A=∠ABH=Rt∠
∵∠AED=∠BEH
∴△ADE≌△BEH
∴AD=BH
∵AD=BC
∴BH=BC
且M为CG中点
∴MB为△MCH中位线
∴BM‖GH
(2)∵E,F为中点
且AD=AB
∴EB=FD
∵HB=DC
且∠EBH=∠FDC=Rt∠
∴△EBH≌△FDC
∵∠EHB+∠HEB=90°
∴∠DCF+∠DFC=90°
∵∠MBC=∠EHB
且∠DCH=90°
∴∠MCB+∠MBC=90°
∴∠BMC=90°
∴BM⊥CF
参考资料: 自己的。。。哈哈哈哈
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询