数列{an}的前n项和为Sn,若a1=2且Sn=S(n-1)+2n(n≥2,n∈N+) 求(1)Sn;(2)是否存在等比数列
{bn}满足b1=a1,b2=a3,b3=a9?若存在,则求出数列{bn}的通项公式;若不存在,则说明理由...
{bn}满足b1=a1,b2=a3,b3=a9?若存在,则求出数列{bn}的通项公式;若不存在,则说明理由
展开
3个回答
展开全部
1)∵an=Sn-S<n-1> => an=2n
∴这是一个a1=2,d=2的等差数列
Sn=2n+(n-1)n*2/2=n^2+n
2)∵b1=2,b2=6,b3=18
b1*b2=2*18=36=b2^2
∴这样的等比数列存在。
q=b2/b1=6/2=3
通项公式:bn=2*3^(n-1)
∴这是一个a1=2,d=2的等差数列
Sn=2n+(n-1)n*2/2=n^2+n
2)∵b1=2,b2=6,b3=18
b1*b2=2*18=36=b2^2
∴这样的等比数列存在。
q=b2/b1=6/2=3
通项公式:bn=2*3^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)Sn-S(n-1)=2n
an=2n……等差数列,a1=2,d=2
Sn=n²+n
(2)b1=a1=2, b2=a3=6, b3=a9=18
q=3
bn=2×3^(n-1)
an=2n……等差数列,a1=2,d=2
Sn=n²+n
(2)b1=a1=2, b2=a3=6, b3=a9=18
q=3
bn=2×3^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询