知正三角形ABC的边长为a,在平面内求一点P,使/pA/^2+/pB/^2+/pC/^2最小,并且求最小值
1个回答
展开全部
设三敏尺角形的滑液心为O
AP=A0+OP BP=BO+OP CP=CO+OP
AP^2+BP^2+CP^2=AO^2+OP^2+2AOOP+BO^2+OP^2+2BOOP+CO^2+OP^2+2COOP
=AO^2+BO^2+CO^2+3OP^2+2OP(AO+BO+CO)
=AO^2+BO^2+CO^2+3OP^2
以上均表示向量
当OP最小时,AP^2+BP^2+CP^2最小桥让高
即O,P重合时,AP^2+BP^2+CP^2最小
AP^2+BP^2+CP^2=AO^2+BO^2+CO^2=a^2
AP=A0+OP BP=BO+OP CP=CO+OP
AP^2+BP^2+CP^2=AO^2+OP^2+2AOOP+BO^2+OP^2+2BOOP+CO^2+OP^2+2COOP
=AO^2+BO^2+CO^2+3OP^2+2OP(AO+BO+CO)
=AO^2+BO^2+CO^2+3OP^2
以上均表示向量
当OP最小时,AP^2+BP^2+CP^2最小桥让高
即O,P重合时,AP^2+BP^2+CP^2最小
AP^2+BP^2+CP^2=AO^2+BO^2+CO^2=a^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询